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Abstract

The goal of this work is to reconstruct high quality
speech from lip motions alone, a task also known as lip-to-
speech. A key challenge of lip-to-speech is the one-to-many
mapping caused by (1) the existence of homophenes and (2)
multiple speech variations, resulting in a mispronounced
and over-smoothed speech. In this paper, we propose a
novel lip-to-speech system that significantly improves the
generation quality by alleviating the one-to-many mapping
problem. Specifically, we incorporate (1) self-supervised
speech representations to disambiguate homophenes, and
(2) acoustic variance information to model diverse speech
styles. Additionally, we employ a flow based post-net which
captures and refines the details of the generated speech.
We perform extensive experiments and demonstrate that
our method achieves the generation quality close to that
of real human utterance. Synthesised samples are avail-
able at the demo page: https://mm.kaist.ac.kr/
projects/LTBS.

1. Introduction
Have you ever wondered what Charlie Chaplin’s movies

would sound like if they weren’t silent? Indeed, there
have been many discussions about what is said in archival
silent movies [32, 24]. The ability to reconstruct speech
from silent videos opens up interesting applications, such
as redubbing silent movies, simulating natural utterance for
those who suffer from aphonia. As a result, the research in
lip-to-speech has attracted an increasing amount of atten-
tion in recent years [8, 25]. This line of research has also
benefited from the advances in deep-learning, in particular,
self-supervised learning, since the training leverages natural
occurrence of audio and video as a mode of supervision.

A lip-to-speech (LTS) system aims to learn a mapping
from silent lip movements to the corresponding speech.
This is a challenging one-to-many mapping caused by the
two major obstacles. One is the existence of homophenes,
words that have almost identical lip movements but dis-
tinct phonemes (e.g. ‘bit’ and ‘pit’). The ambiguity of ho-

mophenes brings the one-to-many relationship between lip
motions and phonemes [5, 18]. Another obstacle is the mul-
tiple variations in speech; same phonemes can be mapped
to diverse speech styles based on individual characteristics
such as timbre, intonation, and accents [7, 14].

Numerous attempts have been made to improve the qual-
ity of LTS systems. Early deep-learning based methods [9,
20] estimate linear predictive coding (LPC) features within
a short video clip. Recently, many works [26, 16, 25, 17]
adopt mel-spectrogram as a regression target because it con-
tains more sufficient acoustic information than LPC. De-
spite the efforts, the previous methods do not fully address
the one-to-many mapping issue, suffering from a mispro-
nounced and over-smoothed synthetic speech.

In this work, we propose a novel LTS system that highly
improves the synthetic quality by alleviating the intrin-
sic one-to-many mapping problem. To disambiguate ho-
mophenes, we employ self-supervised speech representa-
tions as a condition for linguistic information. Previous
studies [1, 12] have proved that self-supervised learning
(SSL) speech models can acquire rich speech representa-
tions without manually labeled text. In particular, it has
been demonstrated that the representations from specific
layers of the SSL model contain elaborate linguistic infor-
mation independent of paralinguistic features [3]. Moti-
vated by this, we explore the intermediate layers of SSL
model and utilise the hidden representations to produce ac-
curate content without using text labels.

Moreover, we adopt acoustic variance information in or-
der to model diverse speech variations. With the help of the
acoustic variations, the model can not only ease the one-to-
many mapping but also learn prosody of speech which is
a key factor for realistic speech synthesis [31, 33]. To fur-
ther address the one-to-many mapping, we use a flow based
post-net [29] which refines acoustic representations with
enhanced modelling capability of capturing fine-grained de-
tails [30]. Combined with the variance information, the
post-net helps to learn the complex one-to-many-mapping
between phonemes and speech, thereby improving the nat-
uralness of the synthesised speech. In the experiments, the
effectiveness of our method is proved on various metrics.

https://mm.kaist.ac.kr/projects/LTBS
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Figure 1: In subfigure (a) and (b), espk is a speaker embedding. In subfigure (a) and (c), hv denotes the encoded video
feature. In (c), Emb.T. refers to an embedding table. In subfigure (d), the modules with dotted lines are operated only in a
training stage. ymel and ŷmel refer to the ground truth and predicted mel-spectrogram, respectively. cond means the post-net
conditions which contain the input and output of the conformer decoder, and espk. In our experiment, we set N = 8.

2. Approach
Given a silent talking face video, our goal is to synthe-

sise the corresponding mel-spectrogram. As shown in Fig-
ure 1(a), the proposed model mainly consists of three com-
ponents: video encoder, variance decoder, and flow based
post-net. The video encoder extracts distinct visual fea-
tures from input videos, and the variance decoder succes-
sively produces coarse mel-spectrogram conditioned on lin-
guistic features and acoustic speech variations. The flow
based post-net elaborates the coarse mel-spectrogram into
the fine-grained one, and the result is finally converted to an
audible waveform by a pre-trained neural vocoder [15].

2.1. Video encoder

From the input video with Tv frames, the video encoder
extracts distinct hidden representations hv ∈ RTv×d where
d denotes the hidden embedding dimension. As depicted
in Figure 1(b), the video encoder comprises 3D convolu-
tion [13], ResNet18 [11], and a conformer encoder [10].
Since each individual has different visual characteristics, we
inject speaker identity to the conformer encoder through an
embedding table.

2.2. Variance decoder

To ease the one-to-many mapping problem in LTS, the
variance decoder aims to generate acoustic representation
with rich variance information. As shown in Figure 1(c), the
variance decoder consists of variance predictors and a con-
former decoder. The variance predictors are composed of

linguistic, pitch, and energy predictor, each of which aims
to condition the corresponding variance information into the
hv . During training, we take the ground truth variance in-
formation to the hidden sequence, and use predicted value
during inference. The following conformer decoder then
converts the empowered hidden visual features to interme-
diate acoustic representations.

2.2.1 Linguistic predictor

The presence of homophenes hinders the synthesis of in-
telligible speech with accurate pronunciation [9]. Although
the previous work [17] attempts to address the ambiguity
of homophenes by leveraging text supervision, it requires
manually annotated text labels and fails to enjoy the ben-
efits of the LTS system. To generate intelligible speech
while preserving the self-supervised nature, we propose a
linguistic predictor that disambiguates homophenes without
the need for text labels.

To this end, we adopt quantised self-supervised speech
representations. We extract continuous linguistic represen-
tations from raw waveforms using pre-trained SSL speech
model, namely HuBERT [12], and quantise the continu-
ous representations for robust training1. Previous stud-
ies [21, 19] report that the quantised speech representations
from the specific layer of HuBERT contain elaborate lin-
guistic features relevant to accurate pronunciation. We in-

1Before quantisation, the continuous features are downsampled to
match the length of video by nearest-neighbor interpolation.



vestigate the effects of different configurations of linguistic
feature extraction, and empirically find that the representa-
tions from the 12th layer of HuBERT-LARGE2, quantised
by K-means algorithm with 200 clusters, exhibits the high-
est correlation with linguistic information. The linguistic
predictor is trained to estimate the cluster indices of each
frame by cross-entropy loss between the target and pre-
dicted indices (Ll).

2.2.2 Pitch predictor

Pitch plays an important role in synthesising realistic speech
with natural prosody [22]. However, the pitch exhibits mul-
tiple variations across gender, age, and emotions, exacerbat-
ing the one-to-many problem in LTS. To accurately capture
pitch information from lip motions, we construct a pitch
predictor [22] that estimates the pitch sequence based on
the hidden visual features.

Following [22], we extract the ground truth pitch values
from the ground truth audio through pYIN algorithm, and
standardise them to have zero mean and unit variance for
better sampling. The extracted pitch values are successively
downsampled to match the temporal dimension of the visual
features. The pitch predictor is optimised with L1 loss be-
tween the target and predicted pitch sequence (Lp).

2.2.3 Energy predictor

Energy represents the intensity of speech, which affects
the volume and prosody of speech [2]. We obtain the tar-
get energy sequence by taking the L2-norm of the mel-
spectrogram along the frequency-axis [4]. To estimate
the energy sequence from hv , we construct energy predic-
tor [28], which is optimised by L1 loss between the ground
truth and predicted energy sequence (Le).

Each variance information is encoded into variance em-
beddings either through an embedding table (linguistic),
or a single 1D convolution layer (pitch and energy). The
variance embeddings are added to the visual representa-
tions hv , and the adapted representation is upsampled to
match the time resolution of target mel-spectrogram. Lastly,
the conformer decoder converts the adapted representations
to a coarse mel-sepctrogram. We apply L1 loss between
the ground truth mel-spectrogram and the predicted mel-
spectrogram (Lmel).

Note that all the variance predictors simplify the acous-
tic target distribution by providing conditional informa-
tion, thereby mitigating the one-to-many mapping issue as
proved in [30].

2https://huggingface.co/facebook/
hubert-large-ls960-ft

2.3. Post-net

Natural human speech comes with dynamic variations.
However, simple reconstruction loss (L1 or L2 loss) is lim-
ited to capture such details, resulting in a blurry and over-
smoothed synthetic speech [23]. To further improve the
sample quality, we apply a flow based post-net [29] which
elaborates the coarse-grained mel-spectrogram into a fine-
grained one.

The architecture of the post-net is depicted in Fig-
ure 1(d). In training stage, the post-net transforms mel-
spectrogram training data x into a tractable prior distribu-
tion through a series of invertible functions, conditioned
with the input and output of the conformer decoder, and the
speaker embedding. The post-net is optimised with mini-
mizing the negative likelihood of data x (Lpost). During
inference stage, we take samples z from the prior distribu-
tion and feed them into the post-net reversely to generate the
final mel-spectrogram. As proved in [30], this flow-based
module enhances the capability of modelling complex data
distributions, which helps to address one-to-many mapping.

To summarise, the final loss (Lfinal) is given by:

Lfinal = Lmel + λvarLvar + λpostLpost, (1)

where Lvar = Ll + Lp + Le. In our experiments, we set
λvar = λpost = 0.1.

3. Experimental Settting
We perform experiments on GRID [6] and Lip2Wav [26]

video datasets. Audio data are resampled to 16kHz
and transformed to mel-spectrograms with 40ms window
length, 10ms hop length, and 80 mel filterbanks. To achieve
the temporal synchronisation with the audio, the video data
are resampled to 25 frames per second, resulting in a fixed
ratio of 1 to 4 between the lengths of video and audio. We
then extract 68 face landmarks for each video frame using
FaceAlignment3. Based on the landmarks, the lip regions
are aligned to a fixed position, and cropped to their centers
with a dimension of 112 × 112. The cropped images are
converted to grayscale.

We construct the identical model architecture for each
dataset, with the exception of the conformer encoder. For
the GRID dataset, the conformer encoder is designed with
6 attention heads and a hidden dimension of 384, and for
Lip2Wav, the encoder is designed with 8 heads and a hid-
den dimension of 512. We follow the recent works [25, 17]
for the configuration of 3D convolution and ResNet18. The
pitch and energy predictors are composed of two 1D con-
volution layers [22], while the linguistic predictor consisted
of four 1D convolutions.

We use AdamW optimiser with β1 = 0.9, β2 = 0.98,
and ϵ = 10−9. The learning rate is fixed to 2 × 10−4. For

3https://github.com/ladrianb/face-alignment
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Table 1: Evaluation results. MOS results are presented with 95% confidence interval. ‘Nat.’ and ‘Intel.’ represent MOS
for naturalness and intelligibility, respectively. Note that Multi-task [17] cannot be trained on the Lip2Wav dataset since the
model requires text transcription to be trained. ↑ denotes higher is better, ↓ denotes lower is better.

Method GRID Lip2Wav

Nat. ↑ Intel. ↑ WER(%) ↓ CER(%) ↓ Nat. ↑ Intel. ↑ WER(%) ↓ CER(%) ↓
Ground truth 4.82± 0.04 4.82± 0.05 12.20 7.03 4.80± 0.05 4.78± 0.05 4.12 2.58
Vocoded 4.74± 0.05 4.79± 0.05 12.44 7.18 4.63± 0.06 4.73± 0.06 6.05 4.19

VCA-GAN 3.46± 0.07 4.10± 0.08 17.62 9.55 2.05± 0.08 2.71± 0.10 48.73 32.51
SVTS 3.35± 0.09 3.97± 0.09 23.30 13.12 1.77± 0.07 2.18± 0.10 61.09 41.01
Multi-task 2.42± 0.09 3.08± 0.12 30.56 18.14 N/A N/A N/A N/A
Proposed 4.46± 0.07 4.63± 0.07 17.07 9.17 4.15± 0.08 3.69± 0.10 34.71 22.57

training the GRID dataset, we randomly sample consecutive
sequence with a length of 50, and the model is trained for
400 epochs. For the Lip2Wav dataset, we sample contigu-
ous 75 frames and train our model for 900 epochs. We apply
data augmentations: horizontal flipping with probability of
50%, and random masking with fixed position throughout
all frames. The masked area is randomly sampled within
the range from 10× 10 to 30× 30.

We compare our model against the ground truth,
vocoded4, and generated samples from recent LTS mod-
els which show promising results: VCA-GAN [16],
SVTS [25], and Multi-task [17]. For a fair comparison, all
the LTS models are trained on the same settings, and the
predicted mel-spectrograms are converted to audible speech
by pre-trained Fre-GAN vocoder [15].

4. Experimental Results

The performance of the proposed method is evaluated
with both qualitative and quantitative evaluation metrics.
For qualitative evaluation, we conduct mean opinion score
(MOS) test, wherein 30 domain-expert speakers assess the
quality of 30 random speech clips for naturalness and intel-
ligibility on a scale of 1 to 5. Naturalness of speech rep-
resents how close the speech is to that of human utterance.
Intelligibility focuses solely on the successful delivery of
linguistic contents; high scores are given if one can clearly
identify the contents even if it sounds unnatural. Moreover,
we also compute word error rate (WER) and character error
rate (CER) of 300 random samples for quantitative evalua-
tion. For error calculation, we obtain the transcriptions of
speech clips by using publicly available automatic speech
recognition (ASR) model [27] pre-trained on 438k hours of
English corpus.

4Vocoded speech refers to speech reconstructed from the ground truth
mel-spectrogram through a vocoder, and thus it is practically considered
the upper bound quality for our evaluation.

4.1. Quality comparison

As a qualitative evaluation, we compute MOS for nat-
uralness and intelligibility. As shown in Table 1, our pro-
posed method achieves the highest naturalness and intelli-
gibility on both datasets. Especially, in GRID dataset, the
generated speech of the proposed method closely approxi-
mates the vocoded quality with a minor gap of 0.28 in nat-
uralness and 0.13 in intelligibility.

Moreover, as a quantitative metric, we compare the WER
and CER of the synthesised speech with those of the ground
truth and vocoded speech. For the GRID dataset, the error
rates are obtained by directly comparing the ASR transcrip-
tions with the provided ground truth texts. For the Lip2Wav
dataset, since the dataset does not provide text labels, we
manually annotate the ground truth texts and compare them
with the ASR transcription results.

The results are shown in Table 1. The proposed model
clearly shows the lowest WER and CER on both GRID and
Lip2Wav datasets. This demonstrates our method can ef-
fectively reduce the homophene problems and synthesise
highly intelligible speech with accurate pronunciation.

5. Conclusion

In this paper, we propose a novel LTS system that gener-
ates high-quality speech speech close to human-level qual-
ity in both naturalness and intelligibility. We directly tackle
the inherent one-to-many mapping problems, and address
them by providing linguistic and acoustic variance infor-
mation. We further refine the generated speech by enhanc-
ing modelling capability. Both qualitative and quantitative
experiments clearly demonstrate that the proposed method
improves the overall quality of the synthesised speech, out-
performing the previous works by a notable margin. For
the future work, we will continue to enhance the generated
speech quality by adopting audio-visual SSL models. We
also aim to simplify the overall generation pipeline, making
a fully end-to-end architecture.
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