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1. Introduction
Auditory and visual characteristics can convey important

semantic and spatial information. The well-known cocktail
party problem [1] is a classical task of sound source separa-
tion. It aims at separating the target source audio from audio
mixture. A popular line of work for audio-visual separation
is to encode visual information as guidance for resolving
sound ambiguity from mixed audio sources [14, 17, 19].

Predominant audio-visual separation methods have typ-
ically been designed for monaural audio-visual separation
(MAVS). However, scenarios limited to single-channel au-
dio lack the capacity for perceiving 3D visual scenes ac-
companied by spatial audio. Although being attempted ear-
lier in [2], researches on audio-visual spatial audio separa-
tion (AVSS) (see Fig. 1) are highly limited. Unlike MAVS,
AVSS provides listeners with a more immersive perceptual
experience, thus making it a challenging task.

Existing spatial audio-visual works have mainly focused
on spatial audio generation [2,15]. This involves converting
standard monaural audio into binaural or ambisonic sounds.
Sep-stereo [18] regards MAVS as a specific case of binaural
audio reconstruction at the cost of artificially rearranging
visual information. However, these methods lack sufficient
audio-visual modeling and still exhibit a domain gap when
it comes to spatial audio separation.

In this paper, we address the audio-visual spatial audio
separation task by simultaneously considering what and
where the sounding object is. In an effort to overcome cur-
rent limitations, we introduce a new position-aware audio-
visual separation method for spatial audio. We first de-
tect sounding objects to obtain regional visual embeddings
(what). Then we encode the spatial location of the sound-
ing objects explicitly. The positional embeddings can be
another guidance to reveal the spatial information (where),
which benefits separating individual audio in different di-
rections. How does this correspond to audio? We consider
the inter-microphone phase difference (IPD) [13], which
represents the established spatial feature between the left
and right channel. We force the network to learn the syn-
chronization and correlation between the spectra-spatial au-

Figure 1. Our approach can separate individual binaural sounds for
sounding objects (piano and guitar) from a binaural audio mixture.

dio feature and the visual-positional representations.
Additionally, to leverage the correlation between monau-

ral and binaural channels, we employ a pre-trained separa-
tor. By utilizing the extensive video data with monaural
sounds available in the MUSIC-21 dataset, we accomplish
effective pre-training. Experiments on the binaural FAIR-
Play dataset can validate the efficacy of our approach.

2. Overview of Proposed Approach

Given an unlabeled video segment V and its correspond-
ing spatial audios xL(t) and xR(t), the detected audible
objects are defined as O = {O1, ..., ON} for each video
frame. Our spatial audio separation task aims to separate
the individual audio of each sounding object from the mixed
audio: xL(t) =

∑N
n=1 x

L
n(t), x

R(t) =
∑N

n=1 x
R
n (t), where

xL
n(t) and xR

n (t) represent the time signals.
As depicted in Fig. 2, our training architecture consists

of four parts. During video pre-processing, we utilize two
sets of solo videos and their synchronized spatial audios
{V1, x1(t)}, {V2, x2(t)} with sounding objects O1, O2 in
both videos [12], we artificially mix two binaural sounds:
xL
m(t) = xL

1 (t) + xL
2 (t), x

R
m(t) = xR

1 (t) + xR
2 (t). Then

we perform object detection to obtain the object bound-
ing boxes and the corresponding coordinates of the objects.
The vision network encodes the detected objects to pro-
duce visual features. For the position network, we conduct
positional encoding for each pixel in the visual object re-
gion. Both features are performed attention-based fusion.



Figure 2. The proposed architecture. Video pre-processing includes object detection and source mixing. Vision extraction network encodes
the visual regions of detected objects; position network simultaneously encodes regional coordination features; VP Cross Attention module
aggregates visual and positional representations; sound separation network exploits the fused feature as guidance to separate stereo.

The binaural audio mixture is transformed into the time-
frequency domain and passed to an encoder-decoder sound
separation network. All features are fused through a multi-
scale attention-based fusion module. Finally, we obtain the
estimated audios x̂L

n(t), x̂
R
n (t) of individual objects.

2.1. Vision-Position Embedding Framework

Vision network: In order to precisely localize the audi-
ble objects, we choose the widely used detector Faster R-
CNN [10] trained on labeled Open Images dataset [6] used
in [3, 12]. All potential objects P = {P1, ..., PN} for each
video are detected. Given a video frame V , detections of all
objects consist of four items {(Mn

V , C
n
V , P

n
V , B

n
V )}

N
n=1 =

FRCNN (V ), which represent the frame index M , instru-
ment category C ∈ C, detection confidence probability P
and bounding box B for each detected object. Then we
screen out one object with the highest confidence score
among all detected ones as the audible object. For visual
feature extraction, objects are resized and passed to a pre-
trained ResNet-18 [5] network. We obtain the visual em-
bedding Fv ∈ RCv×H×W before the last fully-connected
layer, where H = Hb/32,W = Wb/32, Cv = 512 denote
the feature map size and channel dimension of Fv , respec-
tively. Hb,Wb represent the resized image shape.
Position network: Going beyond the general MAVS
strategy, we leverage positional representations as a new
constituent modality and demonstrate the association with
spatial distribution embedded in spatial audio. Specifically,
we leverage a 2D positional encoding for spatial coordinates
of detected objects [7], forcing our positional network to
approximate a higher frequency function and guide spatial
audio separation. The function γ(·) represents a mapping
function from low-dimensional space into a higher one,
γ(x, y) =

(
sin(20πx), cos(20πx), sin(20πy), cos(20πy), . . . ,

sin(2D−1πx), cos(2D−1πx), sin(2D−1πy), cos(2D−1πy))
(1)

This sinusoidal function is applied simultaneously to 2D co-
ordination in (x,y) (which are normalized to range [−1, 1]
[7]). In our experiments, we set D = 16 for γ(x, y) to en-
code each pixel in the detected position region relative to
video frames. For position feature extraction, the encoded
features are performed adaptive max pooling followed by
multi-layer perception (MLP). Finally, the positional fea-
ture is converted to Fp ∈ RCp×H×W , where Cp is equal to
the vision feature dimension Cv in the previous section.
VP cross attention module: The VP cross-attention
module is implemented to integrate the visual and spatial
position embeddings. As illustrated in Fig. 3 (a), the VP
Cross-Attention module is composed of a CMA block and
a convolutional layer. CMA(M,N,N) performs cross-
modal attention over the first and second axes of N ,

α = LN(MHA(MQ, NK , NV ) +M)

CMA(M,N,N) = LN(FFN(α) + α)
(2)

where MQ is the query vector of M , NK , NV are key
and value vectors of N . MHA, FFN , LN denote the
multi-head attention, feed-forward layer, and layer normal-
ization, respectively. Then the visual-positional feature
Fvp ∈ RCvp×H×W can be obtained after a convolutional
layer to halve the channel dimension,
Fvp = Conv(CMA(Fv, Fp, Fp)⊕ CMA(Fp, Fv, Fv)) (3)

where ⊕ and Conv denote the concatenate operation and
point-wise convolution, respectively.

2.2. Multi-modal Sound Source Separation

Audio embedding network: The time-discrete binaural
audio waveform are first converted to time-frequency spec-
trograms XL

m, XR
m through STFT [4] transform. In terms

of spatial audio, sound source locations are determined by
time differences between the sound sources reaching each
ear [2, 9], which can be measured by the inter-microphone
phase difference (IPD) between the left and right channels.



(a) VP Cross-attention module (b) Multi-Scale Audio Fusion Network

Figure 3. Two basic blocks of multi-attention modules. (a) VP Cross-Attention, in which the vectors of visual and positional features are
integrated through Cross-Modal Attention (CMA) block; (b) The multi-scale fusion and VP/AVP cross-attention modules.

The IPD can be calculated as IPD = cos(∠XL
m − ∠XR

m),
where ∠ represents the phase angle of the complex spec-
trogram. We concatenate both log power spectra and IPD
features and obtain the audio embedding of size 2×T ×F ,
where T and F represent the time and frequency dimensions,
respectively. In this manner, the input of the sound separa-
tion network contains both the acoustic spectra (what) and
spatial cues (where) carried by the binaural audio. Then a
U-Net [11] backbone is used for encoding features into se-
mantic representations. At the bottleneck, the multi-scale
audio fusion network performs multi-modal modeling over
the audio, vision, and position features.
Multi-scale audio fusion network: To fuse the spectra-
spatial audio feature and the visual-positional representa-
tions, we put forward a multi-scale audio fusion network
visualized in Fig. 3 (b). Three feature tensors FN−i

a (N =
7, i = 0, 1, 2) extracted by the last three down-sample con-
volutional layers are reshaped to Ca×QN−i

a by multiplying
the time and frequency dimension.

Fa = fConcat(F
N
a , FN−1

a , ..., FN−i
a ), i = 0, 1, 2 (4)

The output audio embedding Favp ∈ RCa×T
S ×F

S (S denotes
stride of audio feature map) is computed by,

Favp = f2(CMA(Fa, Fvp, Fvp)⊕ f1(CMA(Fvp, Fa, Fa)))

(5)
where f1(·) denotes the one-dimensional convolusion, f2(·)
means dimensional expansion and two-dimensional convo-
lution operation. The feature vector Favp is regarded as
guidance for audio separation and passed to the decoder up-
sample layers of U-Net. Finally, the predicted magnitude
binary masks M̂L

n ,M̂R
n are multiplied by the original mix-

ture spectrogram XL
m, XR

m to produce the final estimation
of output spectrograms and estimated audios x̂L

n(t), x̂
R
n (t).

x̂B
n (t) = ISTFT (M̂B

n ⊙XB
m)

MB
gt,n(u, v) = [XB

n (u, v) ≥ XB
m(u, v)]

(6)

where ⊙ denotes element-wise multiplication, (u, v) rep-
resents time-frequency dimension, B ∈ [L,R], n ∈ [1, 2]

(number of the objects). The ground truth of binary masks
MB

gt,n are created by the ratio between the source spectro-
grams XB

n and the mixture spectrograms XB
m.

Overall learning objective: We optimize our framework
training objective by minimizing a combination of both fre-
quency and time reconstruction losses. We measure the lin-
ear combination between the L1 and L2 losses over the pre-
dicted ratio masks and ground-truth. Furthermore, we in-
troduce the loss between the target audio xB

n (t) and recon-
structed audio x̂B

n (t) over the time domain. Formally,

Lfreq =

N∑
n=1

∑
B∈L,R

∥M̂B
n −MB

n ∥1 + α∥M̂B
n −MB

n ∥2

Ltime =

N∑
n=1

∑
B∈L,R

∥x̂B
n (t)− xB

n (t)∥1

Lbinaural = Lfreq + βLtime

(7)

2.3. Transfer Learning by Monaural Dataset

Due to the complexity of the binaural attributes, the
framework designed for spatial audio is complicated for
training directly. To alleviate this issue, we choose a widely
used mono dataset MIT MUSIC [16] to perform transfer
learning. This dataset includes more instrument categories
and videos, which can mitigate the difficulty of AVSS.
Some of the instrument types overlap, which makes the
sound separation between similar acoustic characteristics
mutually beneficial. Similar to the training process in Fig. 2,
we pre-process the videos in MUSIC dataset. Both audio
and visual features are fused at the bottleneck. Note that the
monaural audios do not possess the spatial location infor-
mation. The IPD and position feature will not be consid-
ered as input to the network. After training, the separation
network can be a good separator for most mixture audios of
different instruments. Finally, we load pre-trained parame-
ters both of the U-Net separation and visual network as ini-
tial weights and perform complete position-guided audio-
visual separation network training on the binaural dataset.



Figure 4. A set of solo separation results on FAIR-Play test set. Predicted spectrograms of SOTA methods and ours are depicted for both
channels. Red boxes illustrate the difference between the predicted spectrogram and the ground truth.

3. Experiment and Results

In this work, we train and evaluate the proposed position-
aware audio-visual separation framework on the FAIR-Play
dataset [2]. It contains 1039 10s solo videos with spa-
tial audios. We randomly split it into train/val/test sets:
728/103/208. Moreover, we evaluate the ability for separat-
ing multiple sources by testing 418 duet videos as illustrated
in Fig. 1. We adopt the widely-used mir eval [8] library
metrics SIR and SDR to measure the quality of separation.
Comparison with state-of-the-art: To evaluate the per-
formance of our framework on audio-visual sound separa-
tion, we compare it to two baselines most related to binau-
ral audio separation and generation: 2.5D Separation [2]
and Sep-Stereo [18], and recent state-of-the-art methods:
SoP [16], Co-separation [3], and CCoL [12]. Since those
methods are specialized in MAVS, we take the left and right
channels into the network separately for training and eval-
uation. The SDR and SIR quantitative analysis are illus-
trated in Tab. 1. The results show that our model outper-
forms its closest competitor, Sep-Stereo [18], by an obvious
superiority of 1.0 dB on SDR and 2.85 dB on SIR for bin-

Method Left Channel Right Channel Average

SDR↑ SIR↑ SDR↑ SIR↑ SDR↑ SIR↑
SoP [16] 3.34 6.45 3.29 6.42 3.31 6.43
2.5D [2] 3.85 7.24 3.73 7.44 3.77 7.32

Co-Sep [3] 4.25 7.49 4.43 7.64 4.34 7.56
Sep-Stereo [18] 5.05 7.23 5.01 7.45 5.03 7.34

CCoL [12] 4.82 8.24 4.97 8.36 4.89 8.30

Ours 5.89 10.08 5.93 10.30 5.91 10.19

Table 1. Comparisons of methods for source separation results on
FAIR-Play test set. Higher is better for all metrics.

Baseline
Model

Position
Guidance IPD Monaural

Pre-train
Left Channel Right Channel

SDR↑ SIR↑ SDR↑ SIR↑

SoP

% % % 3.34 6.45 3.29 6.42
! % % 4.00 7.31 4.02 7.27
! ! % 4.32 7.90 4.38 7.86
% % ! 4.79 8.36 4.82 8.39
% ! ! 5.14 8.57 5.15 8.55
! ! ! 5.32 8.71 5.36 8.73

2.5D-sep

% % % 3.85 7.24 3.73 7.44
! % % 4.90 8.38 4.82 8.48
! ! % 5.27 9.27 5.25 9.22
% % ! 5.03 8.56 5.08 8.59
% ! ! 5.53 9.14 5.59 9.18
! ! ! 5.89 10.08 5.93 10.30

Table 2. Ablation study of two benchmarks on FAIR-Play test set.

aural channels. The above MAVS methods mainly utilize
appearance-based visual information, which cannot gener-
alize to AVSS. In contrast, our approach considers what and
where the object is, thus demonstrating competence for the
AVSS task. Specifically, both solo and duet video separa-
tion performances are illustrated in Fig. 4. Our separated
spectrogram is distinctly and completely restored for both
channels compared to SoP, 2.5D-sep, and CCoL.
Ablation studies: We conduct ablation study to evalu-
ate the effectiveness of IPD, position representation, and
monaural transfer learning in our model. Different config-
urations are conducted for ablation studies on FAIR-Play
dataset. We choose SoP and 2.5D-sep as baselines for ver-
ifying the versatility on benchmark applications. Tab. 2
demonstrates the best scores when all ablation variants are
applied, which confirms that the combined setup can be
applied to any existing MAVS benchmarks to boost the
model’s generalization ability.
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