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Abstract

Never having seen an object and heard its sound simul-
taneously, can the model still accurately localize its visual
position from the input audio? In this work, we concen-
trate on the Audio-Visual Localization and Segmentation
tasks but under the demanding zero-shot and few-shot sce-
narios. Different from existing methods that mostly em-
ploy the encoder-fusion-decoder paradigm to localize from
the fused audio-visual feature, we introduce the encoder-
prompt-decoder paradigm to better fit the data scarcity
and varying data distribution dilemmas with the help of
abundant knowledge from pre-trained models. Specifically,
we construct Semantic-aware Audio Prompt (SAP) to help
the visual foundation model focus on sounding objects,
meanwhile, the semantic gap between the visual and au-
dio modalities is encouraged to shrink. Then, we develop
a Correlation Adapter (ColA) to keep minimal training ef-
forts as well as maintain adequate knowledge of the visual
foundation model. Extensive experiments demonstrate that
this new paradigm outperforms other fusion-based methods
in both the unseen class and cross-dataset settings.

1. Introduction
Audio-Visual Localization (AVL) utilizes audio input to

locate sounding objects within a visual scene [1, 3, 9, 21].
However, to meet the demand for greater precision in real-
world scenarios, AVL has shifted from localizing with
bounding boxes or coarse heatmaps to pixel-level segmen-
tation masks, known as Audio-Visual Segmentation (AVS)
[26]. Currently, as illustrated in the upper-center of Figure
1, many methods commonly implement AVS based on the
fused audio-visual representation, and we name such meth-
ods as the encoder-fusion-decoder paradigm. However, in
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real-world applications, the limited training data and vary-
ing data distribution hinder the segmentation performance
of models when faced with unseen classes and different
datasets. Hence in this study, we aim to enhance the cur-
rent research on AVS, and enable effective localization on
both the unseen classes and cross-datasets settings.

To examine the generalization capability of the encoder-
fusion-decoder paradigm, we set cross-dataset tests on the
VGG-SS dataset [3] but trained on AVS-Benchmarks [26].
The right side of Figure 1 shows that under the zero-shot
setting, current methods fail to outperform the classic AVL
models trained on the VGG-Sound dataset [4], which shares
the same data distribution as VGG-SS. We attribute this
result to explore the audio-visual correlation on specific
datasets using the encoder-fusion-decoder paradigm, lead-
ing to the restricted generalization ability due to the lack of
utilize prior knowledge of pre-trained models. [17] proved
that simply using the prior knowledge in the pre-trained vi-
sual model can improve the generalization ability.

We argue that one of the ways to enhance generalization
capability is to more effectively leverage the prior knowl-
edge encoded in large-scale pre-trained models [23]. Many
models in natural language processing (NLP) and com-
puter vision (CV) exhibit remarkable generalization abili-
ties [2, 7]. Some researchers [12, 24, 25] consider prompt
learning to be capable of enhancing the model generaliza-
tion ability. The key benefit lies in its ability to align the
data distribution of downstream tasks with the prior knowl-
edge embedded in the foundation model, as the task formats
and the output space have reached a consensus [10, 22], thus
enhancing the model generalization capability across vari-
ous downstream tasks. Inspired by prompt learning in NLP
and multimodal research, we consider that a visual founda-
tion model with audio prompts can be a promising way to
achieve generalizable AVL and AVS.

Therefore, we introduce an encoder-prompt-decoder
paradigm that prompts the visual foundation model to per-



Figure 1. The AVS pipeline of encoder-fusion-decoder (the upper-center) and our proposed encoder-prompt-decoder (the lower-center)
paradigms. Classical encoder-fusion-decoder methods decode mask from the fused modality while we prompting visual input with audio
to adapt AVL and AVS tasks to the visual foundational model. The results on the VGG-SS dataset highlight the challenge of generalizing
across different datasets. However, our approach breaks through the 40% cIoU barrier, getting the performance closer to the best method
trained on in-set (VGG-Sound).

form segmentation using audio cues; rather than solely de-
coding from the fused modality. This paradigm enables the
seamless integration of the AVS task within the underly-
ing visual foundation model, consequently enhancing the
generalization capability in AVS by effectively leveraging
the prior knowledge of the pre-trained model. Firstly, we
construct a Semantic-aware Audio Prompt (SAP) to bridge
the semantic gap between the visual and audio modali-
ties, aligning the semantics of the given image and audio
through contrastive learning. SAP assists the visual foun-
dation model in localization based on the provided audio
cues with the same cross-modal semantics. Subsequently,
we use a Correlation Adapter (ColA) to construct the audio-
visual correlation to retain as much prior knowledge as pos-
sible from the visual foundation model. We use the Seg-
ment Anything Model (SAM) [11] as our visual foundation
model for its generalizable segmentation capabilities.

2. Generalizable Audio-Visual Segmentation

2.1. Data Preprocessing

We split the video clip into images at one-second in-
tervals and feed them into ViT [5] to get visual features
FV ∈ RdV ×H×W . Additionally, we process the audio us-
ing VGGish [8] to get the audio features FA ∈ Rdm , then
we acquire the corresponding audio-visual pairs.

2.2. Semantic-aware Audio Prompting

As shown in the left part of Figure 2, SAP serves to
prompt the visual foundation model to retrieve sounding ob-
jects from the visual space with the prior knowledge.

We first obtain the comprehensive visual feature FV G ∈
RdV by performing global average pooling on the visual
feature FV , then we feed FV G into an MLP to achieve con-
sistent dimension with the audio feature FA, resulting in the

visual cues FC ∈ Rdm to align the semantics with audio by
contrastive learning. We also introduce a learnable adaptive
noise FN ∈ RdN as part of the audio prompt to implicitly
aligns current modality features with the data distribution
of the visual foundation model during the tuning process
for specific downstream tasks, and enhancing the model’s
generalization and noise tolerance during inference.

Through the aforementioned operations, we simply con-
catenate the prompt components and audio input to obtain
the final audio prompt FA′ ∈ R2dm+dN , which we also re-
fer to as SAP. Finally, we feed the visual input and projected
prompt FP ∈ R6×dV 1 into the Audio Source Decoder for
sounding object segmentation.

2.3. Audio Source Decoder

We further construct the audio-visual correlation using
the visual foundation model with the help of its prior-
knowledge. However, to minimise the harm to the foun-
dation model, instead of tuning the whole decoder or mod-
ifying the cross-modal attention modules in the middle of
Figure 2 that already contain prior interactive knowledge,
we propose ColA to efficiently construct the audio-visual
correlation by tuning the core context engaging in different
cross-modal attention modules.

Specifically, ColA is a bottleneck adapter that takes the
context between different cross-modal attention modules as
input and performs lightweight updates on it. In this case,
the context refers to the audio prompt that has been updated
through the first cross-modal (audio-visual) module, which
then serves as the key and value for the next cross-modal
(visual-audio) module.

After traversing through all transformer layers, the fi-
nal visual output is used as the mask embedding FM ∈

1SAM provides 6 token slots including 1 IoU token, 4 query tokens and
1 prompt token, we use the first query token for mask generating.



Figure 2. The overview of GAVS. (1) We firstly align the audio and visual semantics for SAP, and introduce visual features as cues (the
green one in FA′ ) for audio input (the blue one in FA′ ). Then we further combine audio input with learnable adaptive noise (the pink one
in FA′ ) to construct the final SAP FA′ , and get the projected prompt FP . (2) Next, we utilize cross-modal attention to learn the correlation
between audio and visual in the Audio Source Decoder, projecting audio into the visual space.

V1S V1M V2
Method Audio-backbone Visual-backbone mIoU(%) F-score mIoU(%) F-score mIoU(%) F-score
AVSBench [26] VGGish PVT-v2 78.70 0.879 54.00 0.645 62.45 0.756
AVSegFormer [6] VGGish PVT-v2 82.06 0.899 58.36 0.693 64.34 0.759
AUSS [13] VGGish PVT-v2 89.40 0.942 63.50 0.752 - -
AVSC [14] VGGish PVT-v2 81.29 0.886 59.50 0.657 - -
AuTR [15] VGGish Swin-base 80.40 0.891 56.20 0.672 - -
AV-SAM [19] ResNet18 ViT-Base 40.47 0.566 - - - -
Audio-SAM † VGGish ViT-Base 56.33 0.727 33.68 0.459 57.41 0.684
SAM-Fusion‡ VGGish ViT-Base 71.92 0.775 50.61 0.637 60.19 0.724
GAVS (ours) VGGish ViT-Base 80.06 0.902 63.70 0.774 67.70 0.788

Table 1. Performance on AVS-Benchmarks. †: We only replace the sparse prompt in SAM with audio inputs, to conduct a comparative
experiment with AV-SAM. ‡: Set up similar to GAVS, but fuse audio and visual without prompt before the Audio Source Decoder.

RdV ×H×W . We appropriately upscale FM and then multi-
ply it with the audio query FP [1] to generate the final mask
Mpred ∈ R4H×4W .

3. Experiments

We evaluate the grounding segmentation performance
and generalization ability on AVS-Benchmarks and VGG-
SS datasets, and their subsets.

3.1. Grounding Segmentation on AVS-Benchmarks

AVS-Benchmarks [26] is a dataset specifically designed
for AVS task. Refer to Table 1, our model achieves the best
performance in multi-source setting (V1M and V2) and gets
comparable performance in single-source setting (V1S).
In the comparison with AV-SAM, where both models uti-
lize prompts, our implemented straightforward Audio-SAM
freezes all parameters except for the audio input, which is
passed through an additional MLP for updating. This re-
sulted in a performance improvement of 15% compared to
AV-SAM, demonstrating the effectiveness of the encoder-
prompt-decoder paradigm. Besides, we further compare
the performance of various open-source models at different
data volumes to demonstrate our superiority in data utiliza-
tion. As shown in Figure 3, with only 50% of the data, we
can achieve the best performance equivalent to using 100%

of the data by other models.

3.2. Unseen Classes on AVS-V3

We design AVS-V3 to test the unseen classes generaliza-
tion ability of models for the AVS task. It is set up with
four settings, namely 0-shot, 1-shot, 3-shot, and 5-shot. As
shown in Table 2, our model achieves the highest 0-shot per-
formance, exhibiting superior generalization when encoun-
tering unseen objects. Meanwhile, we can observe that after
3-shot learning, our model surpasses other models’ perfor-
mance trained with 5-shot, indicating that our model pos-
sesses better few-shot learning ability.

0-shot 1-shot 3-shot 5-shot
Method mIoU(%) F-score mIoU(%) F-score mIoU(%) F-score mIoU(%) F-score
AVSBench [26] 53.00 0.707 56.11 0.754 63.22 0.767 63.87 0.783
AVSegFormer [6] 54.26 0.715 58.30 0.764 64.19 0.774 65.17 0.785
SAM-Fusion 46.25 0.630 50.39 0.671 57.05 0.719 60.82 0.741
GAVS (ours) 54.71 0.722 62.89 0.768 66.28 0.774 67.75 0.795

Table 2. Performance on AVS-V3 for testing the generalization
ability on unseen objects. Our model GAVS, which is trained
with encoder-prompt-decoder paradigm achieves a significant per-
formance improvement compared to other encoder-fusion-decoder
models.

3.3. Cross-datasets on VGG-SS

VGG-SS. VGG-SS [3] is a dataset designed for the AVL
task performance test. In this experiment, we test models’



Figure 3. Visualization of performance improvements of AVS models on the AVS-V2 dataset in relation to the amount of data used for
training. We compare models with subsets consisting of 10%, 30%, and 50% of the full dataset. Our results show that our method achieves
better performance with only 10% of the training data compared to other models trained with 30%. Moreover, our model outperforms other
models trained on the full dataset when trained with only half of the data.

Method Train cIoU(%) AUC
HardWay [3] in-set 34.4 0.382
EZ-VSL [18] in-set 38.85 0.395
SLAVC [17] in-set 39.80 -
MarginNCE [20] in-set 39.78 0.400
AVIN-RN [16] in-set 44.90 0.436
AVSBench [26] zero-shot 36.86 0.370
AVSegFormer [6] zero-shot 38.86 0.390
SAM-Fusion zero-shot 30.17 0.302
GAVS (ours) zero-shot 41.07 0.411

Table 3. The results of VGG-SS for comparing the performance
of zero-shot AVS models with traditional self-supervised in-set
AVL models. Our model outperforms other AVS models in cross-
dataset setting.

cross-dataset generalization on the VGG-SS test set. Pre-
vious works [3, 16, 17, 18, 20] trained models on VGG-
Sound 144k, we label them as “trained on in-set” because
VGG-SS is extracted from VGG-Sound. In contrast, we
train typical AVS models on AVS-V2 and can be labelled as
“trained with zero-shot”. As shown in Table 3, models such
as AVSBench and AVSegFormer perform well on AVS-
Benchmarks but fail to perform as well in cross-dataset set-
tings. Our model has better cross-dataset generalization
ability and surpasses other zero-shot models, although there
is still some gap compared to the best in-set model.

VGG-SS-Sub. We split VGG-SS-Sub as a subset of
VGG-SS to test the cross-dataset generalization ability of
fusion-based and prompt-based AVS models transfer from
AVS to AVL task. Same with the AVS-V3, it is set up with
zero-shot and few-shot (1, 3, 5) settings. Note that the zero-
shot performance of this subset cannot be compared with
the VGG-SS full set as the test set is different. From Table
4, we can observe that our model achieves better zero-shot
and few-shot performance, suggesting that with SAP and
ColA, our model can better fit the data distribution across
different datasets.

0-shot 1-shot 3-shot 5-shot
Method cIoU(%) AUC cIoU(%) AUC cIoU(%) AUC cIoU(%) AUC
AVSBench [26] 37.28 0.374 53.33 0.534 56.78 0.569 57.38 0.574
AVSegFormer [6] 37.99 0.380 53.41 0.534 56.84 0.569 57.65 0.577
SAM-Fusion 31.22 0.315 40.39 0.407 45.25 0.453 48.67 0.487
GAVS (ours) 38.62 0.387 53.70 0.537 57.41 0.574 60.14 0.602

Table 4. Performance on VGG-SS-Sub for testing the generaliza-
tion ability across different datasets. Our model is trained follow-
ing the encoder-prompt-decoder paradigm and achieves the best
zero-shot and few-shot performance.

4. Conclusion
The development of large-scale pre-trained models has

greatly enhanced the generalization performance of tradi-
tional CV tasks, but little attention gives to the general-
ization of cross-modal AVS in zero-shot and few-shot sce-
narios. In this work, we introduce GAVS, the model fol-
lowing the encoder-prompt-decoder paradigm to address
the increasing demand for precise localization with limited
annotated data and varying data distribution. Compared
with other models following the encoder-fusion-decoder
paradigm, our proposed method achieves generalizable
cross-modal segmentation, benefiting from using SAP to
help the visual foundation model focus on the sounding ob-
jects and using ColA for efficient audio-visual correlation
construction. Our method is only one solution and pro-
vides a reference for exploring generalizable AVS, future
work can investigate more flexible methods for generaliz-
able cross-modal audio-visual correlation learning based on
large-scale pre-trained models.
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