
Towards Robust Active Speaker Detection

Siva Sai Nagender Vasireddy1 , Chenxu Zhang2 , Xiaohu Guo1, Yapeng Tian1

1 The University of Texas at Dallas, 2 ByteDance, USA

1. Introduction

Active Speaker Detection (ASD) is the task of identify-
ing the visible speakers in each frame of a video. It is an es-
sential multimodal problem, and both facial dynamics and
speech characteristics in sound provide strong cues.

Existing approaches for active speaker detection focus
on designing effective neural networks that can leverage
temporal and multimodal context information in videos
[13, 14, 11, 2, 4], in which both audio and visual modalities
are fully exploited. However, the input modalities could be
noisy and unreliable, particularly the audio. In real-world
scenarios, non-speech sounds are common in the environ-
ment surrounding the active speaker. As shown in Fig. 1, the
audio track contains both speech and strong cafeteria noise.
Besides speech, current approaches will also encode unde-
sired audio information into the representation, which can
negatively impact active speaker detection performance.

In this paper, we formulate the robust active speaker de-
tection (rASD) problem to address the issue. The goal of
rASD is to detect active speakers in videos with the pres-
ence of non-speech sounds in the surrounding environment.
A naive solution to this problem is to separate the speech
sound from the noisy audio mixture and then feed the sep-
arated sound to the existing ASD approaches. To train a
separator, we can use the mix-and-separate strategy [15, 7]
by randomly sampling non-speech audio and mixing it with
clean speech sound. Recent audio-visual audio separation
and speech enhancement models [6, 15, 1, 8] can be used as
separators to address the problem. However, speech separa-
tion and enhancement is a challenging task, and even state-
of-the-art methods can leave residual noise in the separated
speech. The speech quality is also reduced compared to the
original clean speech. Furthermore, the speech sounds in
the training data used for ASD [13] can be noisy as they
are collected from the web. Using these speech sounds with
inherent noise as groundtruth for training the separator may
lead to inferior performance.

To overcome these challenges, we propose a novel
framework for robust active speaker detection aimed at ad-
dressing the issue of audio noises in the surrounding envi-
ronment of the active speaker. Instead of separating speech
from noisy audio, we utilize audio-visual speech separa-
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Figure 1: Given a video with both audio and visual tracks,
we develop a robust deep audio-visual analysis model that
can detect active speakers even in a noisy environment.
tion as guidance to learn noise-free audio features. These
features are then utilized in an active speaker detection
model. As a result, we can learn speech separation and ac-
tive speaker detection simultaneously in a multi-task learn-
ing manner. Both tasks will use the same audio features,
and the features will be enforced to be clean and helpful
for the active speaker detection task. This approach miti-
gates the residual noise and audio quality reduction issues
and enables the two tasks to be jointly optimized in an
end-to-end framework. To handle inherent noise in speech
sounds and further enhance the robustness of audio features,
we propose a dynamic weighted loss approach to train the
speech separator. In this approach, we reduce the impor-
tance of audio samples with inherent noise during training
using weights that are dynamically generated.

In addition, we collected a real-world noise audio dataset
consisting of 1,350 non-speech sounds from 27 different
categories. Experiments demonstrate that non-speech au-
dio noises can significantly impact ASD models. Our ap-
proach is capable of learning robust speech sound features,
which can improve ASD performance in noisy environ-
ments. Moreover, the proposed framework is general and
can be applied to several different ASD approaches to im-
prove their robustness. Please check out our demo.

2. Method

Problem Formulation. The goal of robust Active Speaker
Detection (rASD) is to identify visible speaking faces in a
given video frame, while accounting for the presence of au-
dio noise. Specifically, the audio clip corresponding to the
video frame is a sound mixture: A = Aspeech +An, which
contains speech from active speakers and irrelevant audio
noise from other sound sources in the surrounding environ-

https://youtu.be/6A03bMaKpuc
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Figure 2: The proposed robust active speaker detection framework. In this framework, we utilize an audio-visual speech
separator to guide the learning of noise-free speech features for active speaker detection. The framework includes a nonlinear
transformation g(·) to bridge the features between the separator and the detector. In addition, a dynamic weighting mechanism
is employed to generate dynamic weights for the separation loss, which helps handle inherent speech noises. The framework
is general and can be applied to improve the robustness of any existing audio-visual active speaker detectors.

ment. The task of rASD is highly challenging, as it requires
effective utilization of the spatial, temporal, and multimodal
contexts present in both audio and visual modalities while
accounting for potential noise in the audio signal.

2.1. Overview

Active Speaker Detection Pipelines. Most existing ASD
methods [13, 14, 11, 2, 3, 4] can be generalized into four
main modules: the visual feature extractor ΦV , the au-
dio feature extractor ΦA, the audio-visual fusion module
ΦAV , and the speaker detection module ΦD. These mod-
ules work together to detect the active speaker(s) in a video.
The inputs to these methods are a set of face crops Xi =
{x1

i , x
2
i , ..., x

k
i } for each person i, with a sequence of k

face crops, and the corresponding audio A. The visual
feature extractor ΦV generates sets of feature representa-
tions F i

v = ΦV (Xi) of the face crops, while the audio
feature extractor ΦA generates sets of feature representa-
tions Fa = ΦA(A) of their corresponding audio waveforms.
The audio-visual fusion module ΦAV then generates a set
of audio-visual features F i

av = ΦAV (Fa, F
i
v) for each per-

son i, which contains features of each of the face crops in
Xi. Finally, the speaker detection module ΦD generates the
set of predictions Pi = ΦD(F i

av), which contains a predic-
tion score pki for each of the face crops xk

i . A loss function
LASD is computed using the standard Cross-entropy loss.

Our Approach. Rather than developing an advanced ac-
tive speaker detection approach, our focus is on creating a
sturdy audio-visual framework that can enhance the robust-
ness of any existing active speaker detection method. Our
approach centers on training a more robust feature genera-
tor to replace the existing ΦA. To improve the robustness
of our model, we employ an audio-visual speech separation
model to guide the robust audio feature learning. To ad-

dress the presence of inherent audio noise in speech sounds
and further reduce the effect of noise on encoded audio fea-
tures, we introduce a dynamic weighted loss for separation.
Figure 2 illustrates an overview of our rASD framework.

2.2. Robust Audio Feature Generation

We propose a robust audio feature generation module that
produces robust audio features Fa from noisy speech audio
A. Our approach involves first computing the magnitude
of the spectrogram χA of the audio and then generating the
robust audio features Fa = ΦRFG(χA). The robust audio
features Fa can be integrated into active speaker detection
pipelines to improve their robustness against real-world au-
dio noise. We incorporate a speech separator ΦSS into our
framework to ensure that the generated audio features con-
tain noise-free speech information. The separator acts as
guidance for our model.

Speech Separator. To learn a robust feature generator that
can produce noise-free speech sound features for rASD, we
use a speech separator ΦSS as learning guidance, which can
separate speech audio Sspeech from noisy audio A. Similar
to [15, 7], a U-Net [12] architecture is used as a speech sep-
arator module ΦSS . We adopt the commonly used Mix-and-
Separate strategy to train ΦSS . In our implementation, we
generate noisy speech audio A = Aspeech + αAn by mix-
ing speech audio Aspeech from the AVA-ActiveSpeaker [13]
dataset with randomly sampled real-world noise samples
An, where α controls the noise level being added to the
speech sound. The separator takes the magnitude of the
noisy spectrogram χA ∈ RF×T as input and will output
a separation mask Mpred ∈ RF×T with the help of tracked
faces in video frames. The spectrogram of the separated
speech sound can be reconstructed by χAspeech = Mpred⊙χA,
where ⊙ represents element-wise multiplication operation.



We compute the groundtruth ratio mask Mgt as an element-

wise ratio of χAspeech
and χA: Mgt(p, q) =

χAspeech (p,q)

χA(p,q) . To
train the separator, we use an L1 loss function to compute
the loss LSS between predicted and groundtruth masks:
LSS = ∥Mgt −Mpred∥1.
Robust Feature Generator. Our approach to generating
robust audio features is based on the premise that the set
of intermediate feature maps Fin from the decoder layers
of the speech separator ΦSS contain rich information that
is relevant to the speech sound Aspeech. These feature maps
Fin carry the information required to separate the speech
audio Aspeech from the input noisy audio A. This character-
istic of Fin makes it an ideal resource for generating speech
audio features that are robust to the noise An. The robust
audio features Fa are generated from Fin using transforma-
tion layers in robust feature generation module, ΦRFG.

The module ΦRFG is built on top of the separator ΦSS

by adding a sequence of nonlinear transformations formu-
lated by a function g(·) that generates robust audio features
Fa = g(Fin) from a set of feature maps Fin generated by
ΦSS . ΦRFG is trained in an end-to-end manner with the
ASD loss. Intuitively, the additional nonlinear transforma-
tions in ΦRFG bridge the domain gap between audio fea-
tures that can separate speech audio from noise and the au-
dio features that are required for the ASD task.

We investigated multiple combinations of feature maps
from Fin that can be utilized as input to the nonlinear trans-
formation function, g(·), and found that a combination of
feature maps, one closer to the bottleneck of the encoder-
decoder U-Net architecture of ΦSS and the other closer to
the output of ΦSS produces the best results. We hypothesize
that this combination of feature maps represents the higher-
level and lower-level features of the speech audio, where
the feature map nearer to the separation output contains the
cleanest speech sound information, while the one near the
bottleneck contains more high-frequency speech patterns.

2.3. Robustness to Inherent Noise

The speech separator ΦSS is trained with audio pairs
(A,Aspeech), with A as input and Aspeech as target. How-
ever, audio in web videos could be noisy, and it may contain
inherent noise nin even before adding external noise, i.e.,
Aspeech = Ac +Anin

, where Ac is the clean speech compo-
nent of Aspeech. The presence of Anin

in Aspeech reduces the
quality of speech representation in the feature maps Fin of
the speech separator ΦSS . The degradation in the quality of
Fin occurs because the feature maps also contain informa-
tion about Anin along with Ac and groundtruth mask as the
learning label becomes noisy.

To alleviate the negative impact of Anin
, we propose

reducing the importance of audio samples with inherent
noise by implementing a weighted separation loss approach.

As different samples may have varying levels of noise, we
present a dynamic weight generation approach designed to
dynamically generate weights during training. This method
helps to mitigate the adverse effects of inherent noise and
enhances the robustness of our approach.
Weighted Loss For Separation. In web videos, a sig-
nificant portion of speech sound contains either music or
noise [5]. The noisy labels will decrease speech separa-
tion performance and, consequently, affect the audio fea-
tures which will be used for rASD. To handle the inherent
audio noises and strengthen the robustness of the speech
sound representations, we use a weighted separation loss to
optimize the speech separator. The separation loss is com-
puted as the mean of losses of each sample in a batch, thus
giving equal importance to each sample irrespective of the
presence of inherent noise in speech audio. In our weighted
loss approach, we assign a weight wk ∈ [0, 1] to each train-
ing sample k: Lk

SS = wk ·∥Mk
gt−Mk

pred∥1. The loss will be
used to train the speech separator to increase the robustness
of the features to inherent noise.
Dynamic Weight Generator. One question that remained
unanswered in implementing the weighted loss is how to
obtain the weights. A naive strategy that we can employ is
to set wk as a fixed scalar that is less than 1 for the samples
with non-speech noise, thereby lowering the importance of
these samples with inherent noises. However, samples can
differ significantly, even when they all contain noise.

Rather than using a fixed weight, we propose a dynamic
weight generator, ΦW , that can be trained to predict weights
based on the given audio input. This method enables us to
generate weights that are tailored to the specific characteris-
tics of each sample, further improving the robustness of our
approach. The architecture of ΦW consists of a sequence of
2D convolutional layers, followed by two sets of fully con-
nected layers, with ReLU being used as the activation func-
tion. It has two branches: one predicts the sound type class
of A, while the other predicts the training sample weight.
We train ΦW using the loss LW = LC + 1

b

∑b
k=1 |wk − 1|,

where b is the number of samples for which the loss is be-
ing computed, and LC is the cross-entropy loss computed
over the sound type classification. The second term serves
to prevent an all-zero shortcut.

2.4. Loss function for our approach to rASD

The final loss function of our robust ASD model is L =
λ1LASD+λ2LSS+λ3LW , where λ1, λ2, and λ3 are scalars
to balance the loss terms, and they are empirically set as 0.1,
1, and 0.1, respectively.

3. Experiments

Datasets. To develop and evaluate rASD models, we utilize
the AVA-ActiveSpeaker dataset [13] for ASD and create a



α V MAAS ASC SPELL TalkNet EASEE

80.81

Orig NT Ours Orig NT Ours Orig NT Ours Orig NT Ours Orig NT Ours

0 84.75 84.11 85.36 86.16 85.30 86.31 90.78 91.07 91.37 92.31 92.25 92.85 90.26 89.81 90.55
0.2 77.86 79.81 82.56 80.32 82.33 84.38 84.67 88.34 89.71 89.33 89.98 91.37 85.99 87.03 89.20
0.4 73.28 77.23 80.59 76.15 80.24 82.79 80.49 86.54 88.30 87.50 88.51 90.30 83.26 84.65 87.71
0.6 69.97 75.38 79.05 73.06 78.63 81.54 77.40 85.22 87.19 86.29 87.5 89.39 80.15 83.95 86.46
0.8 67.44 73.95 77.44 70.65 77.33 80.47 75.01 84.21 86.26 85.37 86.67 88.63 79.44 83.01 85.40
1 65.42 72.71 76.56 68.73 76.21 79.51 73.09 83.35 85.39 84.64 85.99 87.97 78.69 82.34 84.98

Table 1: Results of rASD. Here, V is a visual-only model from TalkNet that is not affected by audio noises. Our proposed
framework can be applied to each of the five different ASD approaches, effectively enhancing their robustness.

Figure 3: Real-world visual examples, both of which are
from actual video recordings. The first example has strong
cafeteria noise, while the second contains background mu-
sic sounds. Our approach, TalkNet+Ours, can be applied to
handle these real-world examples (second row). In contrast,
TalkNet with noisy training failed (first row).

Real-world Noise Audio (RNA) dataset from AudioSet [9]
to simulate real-world noise. The AVA-ActiveSpeaker
dataset contains 262 Hollywood movie videos split into 120
training, 33 validation, and 109 testing videos. For our RNA
dataset, we extract 50 clips each from 27 classes of Au-
dioSet that depict diverse real-world sounds, like baby cries,
dog barks, and guitar strums, resulting in 1064 training, 133
validation, and 133 testing clips. During training, for each
AVA-ActiveSpeaker audio sample, we randomly add a noise
segment from RNA’s training set. This noisy audio is pro-
duced as At

ij = At
speechi

+ αijA
t
nij

, with αij being a uni-
formly sampled noise factor from [0, 1]. This factor dictates
the noise intensity, aiding neural networks in understanding
speech amidst varying noise levels without noise overfitting.
For testing, speech from the AVA-ActiveSpeaker validation
set pairs with random noise from RNA’s validation set. We
generate six noisy speech variants by adjusting the noise
factor, αv , from a set: {0, 0.2, 0.4, 0.6, 0.8, 1}.
Baselines. We select five recent state-of-the-art ASD meth-
ods, ASC [2], MAAS [10], TalkNet [14], SPELL [11], and
EASEE [4] as our comparison methods. For each, we first
train it without adding any noises and test the model on AVA
ActiveSpeaker with noise from the RNA. The performance
is displayed in the ’Orig’ column of Tab. 1. Next, we incor-
porate RNA noise into the training data and retrain. These
results are in the ’NT’ column. Lastly, we integrate our ro-

bust audio feature generator into each method and train with
the noisy data. Performance for this is in the ’Ours’ column.

Evaluation. Following previous works on ASD [13, 14],
we use mean average precision (mAP) as the metric and
report our results on the AVA-ActiveSpeaker validation set.

3.1. Results and Analysis

Audio Noise Matters. As seen in Table 1, the perfor-
mance of all five ASD approaches drops as the level of
audio noise increases. When α = 1, the performance of
the original MAAS, ASC, SPELL, TalkNet, and EASEE
models decreased by 19.3%, 16.6%, 17.4%, 17.7%, 7.7%,
and 11.6%, respectively. Surprisingly, ASC and SPELL,
as strong multimodal models, can achieve even worse per-
formance than the visual-only unimodal baseline when α is
large. These results demonstrate that speech noises can sig-
nificantly weaken ASD performance, and joint audio-visual
modeling may not always be helpful in a noisy environment.

Noisy Training. The results show that NT models can gen-
erally improve ASD results once the input speech sound
becomes noisy. Thus, by adding randomly sampled au-
dio noises into the training data, model robustness can be
improved. Another observation is that NT models can de-
crease performance for most approaches when we do not
add any external noises during testing. One possible reason
for this is that NT models may overfit to some audio noises.

Our rASD framework is General and Effective. Table 1
shows that our robust ASD framework can significantly
improve the detection performance of different ASD ap-
proaches. Therefore, learning robust audio features is cru-
cial for detecting active speakers in noisy environments.
Real-world Data. To further validate the effectiveness of
our framework, we apply our model to real-world scenes
(see Fig. 3). We can find that our model successfully detects
talking faces in videos with cafeteria noises and background
music, while the baseline model fails. These results further
illustrate the effectiveness and generalization capability of
our robust ASD framework.
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Ghanem. Active speakers in context. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12465–12474, 2020.
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[10] Juan León-Alcázar, Fabian Caba Heilbron, Ali Thabet, and
Bernard Ghanem. Maas: Multi-modal assignation for active
speaker detection. arXiv preprint arXiv:2101.03682, 2021.

[11] Kyle Min, Sourya Roy, Subarna Tripathi, Tanaya Guha, and
Somdeb Majumdar. Learning long-term spatial-temporal
graphs for active speaker detection. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part XXXV, pages 371–
387. Springer, 2022.

[12] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pages 234–241. Springer, 2015.

[13] Joseph Roth, Sourish Chaudhuri, Ondrej Klejch, Rad-
hika Marvin, Andrew Gallagher, Liat Kaver, Sharadh
Ramaswamy, Arkadiusz Stopczynski, Cordelia Schmid,
Zhonghua Xi, et al. Ava active speaker: An audio-visual
dataset for active speaker detection. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 4492–4496. IEEE, 2020.

[14] Ruijie Tao, Zexu Pan, Rohan Kumar Das, Xinyuan Qian,
Mike Zheng Shou, and Haizhou Li. Is someone speaking?
exploring long-term temporal features for audio-visual active
speaker detection. In Proceedings of the 29th ACM Interna-
tional Conference on Multimedia, pages 3927–3935, 2021.

[15] Hang Zhao, Chuang Gan, Andrew Rouditchenko, Carl Von-
drick, Josh McDermott, and Antonio Torralba. The sound of
pixels. In Proceedings of the European conference on com-
puter vision (ECCV), pages 570–586, 2018.


