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1. Introduction
Recent progress in audiovisual sound separation (AVSS)

enables enhanced separation using aligned audiovisual
cues [2,12,26,27,42–44,53,55]. Yet challenges arise when
visual cues are absent, as in off-screen narrations or close-
ups. We categorize sources as visible sound (in the visual
scope) and invisible sounds (outside the visual scope).

Vital for sound separation is addressing invisible sounds.
They are common in videos because most cameras have a
limited field of view. Existing AVSS methods [42, 49, 53]
can predict the difference between the sound mixture and
the visible sounds as the invisible sound, yet they can not
deal with multiple invisible sources.

We propose a novel audiovisual sound separation frame-
work, AudioVisual Scene-Aware Separation (AVSA-Sep),
which leverages video scene semantics as a substitute for vi-
sual cues. We contend that AVSS techniques leverage visual
semantics for guiding sound separation. Hence, we incor-
porate audio semantics when visual semantics are absent.

As illustrated in Fig. 1, in our approach, we begin with
audiovisual scene recognition to grasp scene-level seman-
tics from the video. Next, an audiovisual separator predicts
visible sounds, while a semantic-guided separator predicts
invisible sounds. This scene-aware setup can handle both
visible sounds and more than one invisible sound source.

Our contributions are threefold: 1) addressing invisi-
ble sounds, especially multiple invisible sounds, in audio-
visual context; 2) introducing AVSA-Sep that leverages
video scene semantics for visible and invisible sound sep-
aration; 3) incorporating semantic parsing into our frame-
work, which helps to separate invisible sounds.

2. Related Work
Blind source separation (BSS). In audio signal process-
ing, BSS methods untangle mixtures into source signals

*Equal contribution.
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Figure 1. The AVSA-Sep framework. It predicts visible and
invisible scenes from frames and sound mixture, then separates
sounds. The audiovisual separator estimates visible sounds, while
the semantic-guided one estimates invisible sounds. This separates
both visible (e.g., blue waveform’s accordion) and invisible (e.g.,
orange waveform’s cello) sound sources.

without additional cues like visuals. Classical approaches,
such as Independent Component Analysis [18], Princi-
pal Component Analysis [17], and Non-negative Matrix
Factorization [20, 35, 47], exploit statistical properties for
source independence. Spatial audio-based methods [7,8,39]
utilize location information. Deep-learning-based meth-
ods [16, 19, 48, 50] leverage deep networks to capture fea-
tures. As shown in Tab. 1, while some BSS methods tackle
multiple invisible sounds, audiovisual synergy is absent.

Audiovisual sound separation. AVSS models have
gained momentum since the inception of Sound of Pixels
(SoP) [53]. Subsequent works [11, 43, 44, 49] have further
harnessed audiovisual correspondences. Various aspects,
such as motion [52], gestures [9, 38], natural language [37,
40], embodied AI [27, 28], object localization [12], visual
grounding [41,42], speech separation [13,21,33], and scene
graphs [3, 4], have been incorporated. [34] considers off-
screen sounds but is limited to one invisible sound. Simi-
lar to iQuery [5], we leverage semantic labels. While other
AVSS methods handle up to one invisible sound, we address



BSS AVSS AVSA-Sep
(e.g., [17]) (e.g., [53]) (Ours)

Uses visual cues ✗ ✓ ✓
2+ invisible sounds Some ✗ ✓

Table 1. BSS methods, such as RPCA [17], lack visual cues and
sometimes handle up to 2 sounds. AV-Sep methods like SoP [53]
address only one invisible sound, while our approach benefits from
visual cues and can separate multiple invisible sounds.

the challenge of separating multiple invisible sounds.

Audiovisual scene understanding. Leveraging extensive
audiovisual datasets [14, 22, 46] has driven a surge in au-
diovisual learning [1, 6, 10, 15, 23–25, 29–32, 45, 51, 54].
While these methods assume audiovisual correspondences,
we incorporate semantics and representations of invisible
sounds. Our approach further employs semantic informa-
tion to guide the separation of invisible sounds.

3. Method
In the universal AVSS task, the goal is to recover indi-

vidual sound sources (S1, S2, . . . , Sm) from visual frames
(I1, I2, . . . , In) of n visible sounds and the sound mixture
(Smix) of m individual sounds. Traditional models assume
a one-to-one correspondence (m = n), while our approach
accommodates any m and n. For clarity, we assume each
frame Ij corresponds to a sound Si, as sounding object lo-
calization has been addressed by Tian et al. [41].

We introduce the AVSA-Sep framework to address this
challenge. It leverages video scenes (frames or seman-
tics) as intermediaries between input audio and separated
sounds, as depicted in Fig. 1. The framework consists of
two steps: 1) a semantic parser predicting scenes from vi-
sual frames and audio mixture and 2) sound separators sep-
arating sound components from the mixture conditioned on
either visual frames or semantic labels. For clarity, we in-
tentionally maintain simple architectures, anticipating that
adapting newer AVSS baselines to our framework will yield
improved performance.

3.1. Semantic-Guided Sound Separation

To address invisible sound sources, we suggest substi-
tuting semantic embeddings for visual features, shown in
Fig. 2. This choice arises from their potential to guide sound
separation, akin to visual features. To encode semantics,
we introduce a label alignment network aligning semantic
labels with visual features.

In the semantic alignment network, we encode a seman-
tic label into a one-hot vector. A linear layer followed by a
sigmoid activation aligns this vector with visual features,
yielding the semantic label embedding fs as the output.

The semantic alignment network introduces a seman-
tic branch (semantic-guided separator) alongside the visual
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Figure 2. The sound separators of AVSA-Sep. The audiovisual
separator is in blue the semantic-guided separator is in orange,
with shared components in grey. The visual network generates
visual features fv , the label alignment network produces aligned
semantic label feature embeddings fs, and the audio network
yields audio features fa from the mixture spectrogram. Sound
synthesizer predicts sound masks using audio and visual/semantic
features and the same weights. Predicted masks combined with
ISTFT recover predicted audios.

branch (audiovisual separator) in the sound separator. To
ensure semantic embedding alignment with visual counter-
parts, we apply the same sound analysis network and sound
synthesizer in both branches.

3.2. Audiovisual Scene Parser

To achieve audiovisual scene-aware separation, we intro-
duce a semantic parser. It predicts semantic labels for sound
sources through audiovisual classification. Then, we apply
the audiovisual sound separator and the semantic-guided
separator for distinct source types.

To cater to the semantic-guided separator, we predict
both visible scene semantic labels Lvis and semantic la-
bels for inaudible but audible scenes Linv. Visible sounds
are those that are both audible and visible, while invisible
sounds are audible but not visible. Our semantic parser,
shown in Fig. 3, comprises two main parts: the visible scene
recognizer and the audible scene recognizer.

The visible parser includes a visual feature extractor, au-
dio feature extractor, and fusion module merging audio and
visual features. For video frames, a dilated ResNet-18 net-
work generates kr-channel visual features, pooled spatial-
temporally. From audio mixture spectrograms, a VGGish
network derives kr-channel audio features through global
pooling. The fusion module combines these features by
summation. Fused features then transform semantic la-
bels of visible scenes using a fully connected layer and
sigmoid activation.

The audible scene recognizer derives a kr-channel fea-
ture from the audio mixture’s spectrogram. Through a fully
connected layer and sigmoid activation, this feature trans-
forms into semantic labels for audible scenes. It is impor-
tant to note that the audio networks of the visible and audi-
ble scene recognizers have distinct weights due to differing
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Figure 3. The figure shows the semantic parser. It employs a di-
lated ResNet-18 for visual features φv , and two VGGish networks
for audio features φa and φ′

a. Predicted semantic labels for visi-
ble sounds come from the fused φv and φa, while audible sounds’
labels originate from φ′

a.

tasks. The visible scene recognizer partners with the visual
network to identify visible scenes, while the audible scene
recognizer discerns both visible and invisible audio scenes.

3.3. Joint Sound Separation Training

During training, we independently train the semantic
parser and sound separator, utilizing semantic labels for su-
pervision and input, respectively. In inference, we merge
the semantic parser and sound separator, enabling the whole
model to predict both visible and invisible sounds from vi-
sual frames and sound mixture input.

The semantic parser is trained using a direct “mix-and-
predict” approach. In each iteration, we mix sounds from
randomly chosen videos, predict visible and audible sounds,
and backpropagate loss. For AVSA-Sep and semantic
parser training and evaluation, we adopt pipelines akin to
those in Zhao et al. [53], with key modifications to optimize
the joint training of the sound separator’s two branches.

In each training and evaluation iteration, the sound sep-
arator processes a batch of k videos. For each video, we
mix audios from m − 1 randomly selected video clips to
form the audio mixture Smix. The audiovisual separator uti-
lizes frames from all m videos to predict individual sounds:
S̃vis
1 , S̃vis

2 , . . . , S̃vis
m . Similarly, the semantic-guided separa-

tor employs semantic labels of scenes from all m videos to
predict individual sounds: S̃scn

1 , S̃scn
2 , . . . , S̃scn

m .
The loss for visual and semantic masks relative to ground

truth masks is given by

k∑
i=1

loss(Si, S̃
vis
i ) and

k∑
i=1

loss(Si, S̃
scn
i ), (1)

respectively. The overall sound separation loss is defined as

Lss =

k∑
i=1

λ · loss(Si, S̃
vis
i ) + (2− λ) · loss(Si, S̃

scn
i ), (2)

where λ is a hyperparameter. Additionally, we include the
triplet loss among ground truth masks as an anchor, vi-
sual/semantic masks as positive, and semantic/visual masks

Dataset Model Visible Invisible

SDR SIR SDR SIR

MUSIC
Baseline [53] -0.65 6.06 -1.92 0.24
MP-Net [49] -0.19 0.85 -1.73 -0.13
AVSA-Sep (Ours) -0.30 6.90 -1.41 5.43

Table 2. Comparison of our baseline (SoP [53]), MP-Net [49],
and AVSA-Sep (ours) in terms of visible/invisible SDR/SIR on
the MUSIC dataset under the challenging 3-sound setting.

of other sources as negative items, with coefficient η as
Ltriplet =

∑k
i=1 η · triplet-loss(Si, S̃

vis
i , S̃scn

−i )) +
∑k

i=1 η ·
triplet-loss(Si, S̃

scn
i , S̃vis

−i)). The final loss becomes a com-
bination of Ltotal = Lss + Ltriplet.

These pipelines offer advantages such as joint weight up-
dates during training and the combined evaluation of sepa-
ration and scene recognition results against ground truth,
yielding visual and semantic separation performance along
with scene recognition performance.

4. Experiments
4.1. Experiment Setup

Implementation Details. We implement our framework
based on SoP [53]. Following their work, we choose to
use binary masks and log-scale spectrograms. Our exper-
iments use 6-second audio clips with three evenly spread
frames per video. Feature channels are set at kr = 512,
and separation loss scaling is λ = 1.5. Sound separa-
tion quality is quantified using SDR and SIR metrics from
mir_eval [36] to assess audiovisual and semantic-guided
separation outcomes.

Datasets. We trained and evaluated our model using the
MUSIC dataset [53], comprising 500 user-uploaded videos
highlighting 11 musical instruments. Each instrument cate-
gory includes around 50 videos. For training and validation,
we excluded duet videos (15%) lacking visible sounds. The
dataset’s clean and balanced nature is conducive to our task.
We could generate artificial videos with invisible sounds for
training and evaluation. Additionally, the dataset’s accurate
ground-truth scene labels are constructed from YouTube
keyword queries, rendering it suitable for our purposes.

4.2. Quantitative Results

In our experiments, we generate mixtures involving 3
sounds to introduce challenging scenarios with the poten-
tial for multiple invisible sounds. When assessing visi-
ble sounds, we compare our audiovisual separator’s perfor-
mance with that of existing audiovisual sound separators.

As invisible sound has no visual cue, conventional au-
diovisual sound separators cannot utilize frames associated
with invisible sounds. These separators need to leverage all
other frames to generate an output. Therefore, we follow
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Figure 4. Two real-world trio videos. In both videos, only the
violin is visible. Existing AVSS methods cannot separate the two
invisible sounds. However, our approach can use semantic labels
to separate them.

these steps: We execute the established sound separation
methods as usual and acquire the predicted sound compo-
nents S̃vis

1 , S̃vis
2 , and S̃vis

3 . Then, we subtract the predicted
sound for other sources,

S̃inv
1 = Smix − S̃vis

2 − S̃vis
3 , (3)

and similarly for S̃inv
2 and S̃inv

3 , where Smix represents the
input audio mixture.

This approach ensures that, during sound separation, au-
diovisual models disregard the associated frames for each
sound, effectively treating both sounds as invisible. Conse-
quently, the achieved metrics are comparable to those of the
semantic-guided separator.

We present the results in Tab. 2. The results show that
AVSA-Sep outperforms the baseline (SoP [53]) and MP-
Net [49] in terms of both visible and invisible sound sep-
aration quality, as indicated by higher SDR or SIR values.
This highlights the effectiveness of the proposed AVSA-Sep
model in handling both visible and invisible sound sources.

4.3. Real-World Examples

We extend our evaluation beyond synthetic test cases to
real-world video clips. To achieve this, we curate YouTube
videos featuring 3 sounds and crop them to show only one
of the musical instruments as visible. This approach allows
us to gather real-world videos containing multiple invisible
sounds. An illustrative instance of such a video, featuring
one visible and two invisible sounds, is presented in Fig. 4.

In this example, our model uses the audiovisual separa-
tor to estimate visible sounds and the semantic-guided sep-
arator to estimate invisible sounds. Note that since AVSS
methods assume all sounds are visible, they cannot separate
any of the two invisible sounds.

Even though there is no ground-truth spectrogram for
these videos, we can still see from predicted spectrograms
that our model is capable of separating visible sounds and
multiple invisible sounds.

Model Visible Invisible

SDR SIR SDR SIR

AV-Sep / Baseline [53] 7.74 14.80 - -

SG-Sep - - 6.23 12.80
AVSA-Sep on Train Set 10.73 17.67 9.72 16.22
AVSA-Sep w/ Train Frames 9.06 16.92 - -
AVSA-Sep 7.91 14.81 9.01 16.45

Table 3. Ablation study results on the MUSIC dataset. SG-Sep
refers to only the semantic-guided separator. [“On Train Set”: re-
sults evaluated on the training set; “w/ Train Frames”: test frames
are replaced with training frames of the same category.]

4.4. Ablation Studies

Joint training. Given our dual-branch design, we explore
the interactions between the two branches by training them
separately. The results are summarized in Tab. 3.

Joint training enhances the performance of both the
semantic-guided and audiovisual separators. This improve-
ment is likely attributed to the use of complementary infor-
mation from audiovisual modalities and semantic labels.

The visual branch vs. the semantic branch. The results
in Tab. 3 indicate that the semantic branch outperforms the
visual branch when both are present. One potential expla-
nation is the semantic branch’s access to ground-truth la-
bels, which the visual branch lacks. However, the seman-
tic branch, without visual frames, cannot capture individual
variations in videos. This is supported by our observation
that while the semantic-guided separator achieves superior
metrics on the test set, audiovisual separation performs bet-
ter on the training set.

To investigate this further, we conduct an experiment
where we replace the frames of test videos with frames from
the training videos having the same scene label. The results,
as summarized in Tab. 3, reveal a significant performance
improvement when replacing the frames. This strongly sup-
ports the hypothesis that the underperformance of the visual
branch is attributed to its inability to capture the semantic
content in the frames of the test videos.

5. Conclusion and Limitations

Conclusion. We address the challenge of separating invis-
ible sounds in AVSS and introduce a compatible framework
with existing models. Our experiments confirm its capabil-
ity to extend AVSS to multiple invisible sounds.

Limitations. While our approach handles multiple invis-
ible sounds, exploring the treatment of multiple instances
of the same semantic category could be valuable. Addition-
ally, refining the semantic parser to enhance label prediction
accuracy and potentially predict the counts of visible and in-
visible sounds represents another promising avenue.
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