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Abstract

Cross-modal Retrieval (CMR) is formulated for scenar-
ios where the queries and retrieval results are of different
modalities. Existing CMR studies mainly focus on the com-
mon contextualized information between text transcripts and
images, and the synchronized event information in audio-
visual recordings. Differently, in this paper, we investigate
the geometric correspondence between images and speech
recordings captured in the same space and formulate a novel
CMR task, called Spatial Image-Acoustic Retrieval (SIAR).
We propose the Contrastive Speech Image Retrieval (CSIR)
method which uses supervised contrastive learning to at-
tract the same-space cross-modal features while repelling
the ones from different spaces. Then, image and speech fea-
tures are directly compared and we predict the SIAR result
with the maximum similarity. Experiments demonstrate the
effectiveness and feasibility of our proposal.

1. Introduction

CMR performs flexible information retrieval among het-
erogenous modalities (e.g., images, texts and audio sig-
nals) [24]. As a compelling research topic, it has been exten-
sively studied with a broad range of applications, such as vi-
sual question and answering [14], video captioning [2], text-
image retrieval [8] and action localization [17] etc. Specif-
ically, CMR employs an uni-modal query to retrieve the
counterpart from a different modality. It allows users to
obtain comprehensive information about enclosed events or
contextualized information from different modalities.

Most existing CMR works focus on the intersection of
computer vision and natural language processing fields [6,
10, 13, 16, 26–28]. For example, the Contrastive Lan-
guage–Image Pre-training (CLIP) model [16] learns highly
generalizable representations by exploiting common con-
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Figure 1. Our proposed SIAR task, which performs bi-directional
cross-modal retrieval between images and reverberant speeches
captured in the same space (data from different spaces are indexed
by different colors).

textualized content through massive image-text pairs, fol-
lowed by other extensive explorations [6, 10, 28]. In [13], a
spatial-temporal graph-based framework is proposed to facil-
itate multi-modal machine translation. In [26], the semantic
consistency of the image and text was enhanced through a
deep discrete cross-modal hashing network. Whereas CMR
between audio-visual signals is still in infancy. As a repre-
sentative work, a recent method [25] systematically distills
audio representations from the pre-trained CLIP model [16]
to facilitate downstream audio event classification and re-
trieval tasks. However, it only explores the same motive and
semantics goal from synchronized audio-visual recordings,
while neglecting their geometric dependence.

While exciting as proof of concept and potential appli-
cations, there exists no work that correlates visual images
and speeches via the common spatial properties. How to
bridge their heterogeneity gap remains under-explored. In
this work, we introduce the novel SIAR task which relies on
the image-speech geometric correspondence. As shown in
Fig. 1, it retrieves speeches captured in a geometric space
depicted by the query image and vice versa.

2. Proposed Method

Let us start by giving a few definitions. We denote the
training set as O={oi=(vi, si, ci), i = 1, 2, ..., n}, includ-
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Figure 2. (a) The block diagram of our proposed CSIR approach for the novel bi-directional SIAR task. The extracted image features ev

and speech features es are projected into a common representation space, denoted as zv and zs, respectively. (1) CE loss: cross-modal
features are concatenated for space prediction; (2) SCL loss: The L2-normalized cross-modal features z̃v and z̃s are marked with rounds
and rectangles where colors index distinct space labels. In particular, the positive feature pairs are depicted by red bi-directional arrows
while the negative ones are marked with green arrows (⊙ denotes pairwise concatenation); (b) The architecture of the speech encoder for
space classification (⊛ denotes convolution).

ing the set of visual space images V={v1,v2, ...,vn}, re-
verberant speech waveforms S={s1, s2, ..., sn}, and space
labels C = {c1, c2, ..., cn}. Then the cross-modal corre-
spondence can be learnt from paired image-speech samples
(vi, si). Let us denote the test set as T = {(vj , sj), j =
1, ..., n} where O∩T = ∅. SIAR aims to learn a similarity
measure that given a query speech waveform sq ∈ T or
an image vq ∈ T, retrieve the counterpart from the same
space. These bi-directional Speech-to-image Retrieval (SIR)
process is formulated as:

v̂ = argmax
vj∈T

Fsim(sq,vj ; Υ
sim) (1)

where Fsim(·) denotes the similarity computation derived
from our proposed approach and Υsim are the trainable
parameters. The Image-to-speech Retrieval (ISR) process is
formulated in a similar way. We consider a retrieval result is
correct if it has the same space label as the query.

The key of SIAR is how to project the heterogenous fea-
tures into a common representation space for direct similarity
measure. We first extract features from the separately pre-
trained image and speech encoders and then use individual
Fully Connected (FC) layers to make the projections:

zv = FCv(e
v; Υzv) ∈ Rd (2)

zs = FCs(e
s; Υzs) ∈ Rd (3)

where zv and zs are the normalized features, Υzv and Υzs

are FC parameters, d is the common feature dimension.

2.1. Speech Encoder

There is no pre-trained model of space recognition from
reverberant human speech. Thus, we design and pre-train
a novel speech encoder, to extract the space-aware acoustic
signatures, illustrated in Fig. 2(b) and formulated as:

es = Fs
(
s; Υs

)
∈ Rds (4)

where Fs denotes the speech encoder parameterized by Υs,
and ds represents the speech feature dimension.

Specifically, the speech encoder takes Mel spectrogram
as the input and ensembles both Convolutional Neural Net-
work (CNN) and transformer [23] architectures by taking
their complementary characteristics: CNNs are effective in
processing contextual information of spectrograms [19, 22]
but limited at modeling time series signals, while transformer
excels in capturing the long-distance correlation because of
the self-attention mechanism [1, 23].

Outputs of the two branches are concatenated after an
average (over time) and a flatten operation to predict the
posterior probability of the space label where we use Cross
Entropy (CE) as the optimization criterion. Since RT60 char-
acterizes the environmental reverberation effect by comput-
ing the time taken for a sound to decay to one millionth of
its original intensity (i.e., 60 dB of decay), it is also used
as a supervision. Moreover, since speech encoder can be
enhanced by maximizing the intra-class feature similarities
while minimizing the inter-class similarities, we also adopt
the SCL as a loss.



2.2. Image Encoder

CNNs are useful in estimating late-reverberation statis-
tics from images [11, 12]. Compared to CNN, ResNet [9]
uses identity mapping to tackle the vanishing gradient prob-
lem, resulting in remarkable success in computer vision
applications. Thus, we believe that the ResNet-based struc-
ture will also be beneficial to image-acoustics correspon-
dence learning. We select a pre-trained space recognition
model on Place365 dataset [30] to extract visual features:
ev = Fv(v; Υv) ∈ Rdv where Fv denotes the image en-
coder parameterized by Υv and dv represents the visual
feature dimension.

2.3. Cross-modal Retrieval.

Given the supervision of space labels, our proposed CSIR
network, illustrated in Fig. 2(a), incorporates feature ex-
traction, cross-modal space prediction and space-aware con-
trastive feature discrimination into a unified framework to
facilitate bi-directional SIAR.
Cross-modal space prediction. Since both images and
speeches are captured in the same environment, to leverage
the space-specific supervision, we fuse the cross-modal fea-
tures to predict the posterior probability of each semantic
space label:

pvs(c) = MLPvs(z
v ⊙ zs; Υvs) ∈ RC (5)

where MLPvs denotes the space classifier parameterized by
Υvs and ⊙ indicates pairwise feature concatenation. Then,
we use CE loss as the training objective:

Lvs
CE = −

C∑
i=1

p(ci)log(pm(ci)) (6)

Space-aware feature discrimination. We use SCL [5]
to bridge the cross-modal heterogeneity gap by learning
common representations with maximized intra-class distance
and minimized inter-class distance. In particular, image
and speech features are intrinsically different and can be
considered as augmented views to each other. Thus, in the
resulting multiviewed batch, cross-modal features from the
same space class are considered as positive pairs while those
from different spaces are negative pairs. Then, the cross-
modal SCL loss is defined as:

Lvs
SCL = −

∑2N
i=1

1
2Nci

−1

∑2N
j=1 δ · log

(
exp(z̃s

i ·z̃
v
j /τ)∑2N

k=1 1i̸=k·exp(z̃s
i ·z̃v

k/τ)

)
(7)

where δ = 1i ̸=j,ci=cj is a binary indicator and z̃si denotes
the L2 normalized version of zsi .

The overall optimization function is defined as:

Ltotal = αLvs
CE + (1− α)Lvs

SCL (8)

where α is a pre-defined parameter to scale the contributions
of different loss items which is set to 0.6 empirically.

Table 1. Specifications of the Image2Reveb dataset [18].

AIR sampling rate 22,050 Hz
Image size 224 × 224 pixels

Total No. of spaces 265
# in/outdoor spaces 235/30

Train Test Total

# image-AIR pairs 10,207 1,647 11,854
(indoor/outdoor) (8,963/1,244) (1,515/132) (10,478/1,376)

Speech generation Randomly sample 5 recordings from the
WSJ dataset to convolve with each Acoustic
Impulse Response (AIR).

3. Dataset

We use the publicly available Image2Reverb dataset [18]
for SIAR experiments. It enables learning of late-field rever-
beration characteristics by providing paired AIRs and images
in high variability of spaces (e.g., musical halls, bedrooms,
and cathedrals). Apart from Image2Reverb, we also inves-
tigate other alternative datasets. Sound-space1 [4] provides
acoustically realistic audio renderings on the vision-based
Replica [20] and Matterport3D [3] datasets. However, both
the acoustic signals and visual scenes are simulated in simi-
lar indoor smart home scenarios, thus being less realistic and
varied than Image2Reverb. For VEGAS [31] and AVE [21],
the most explored audio-visual datasets, they only provide
category labels (e.g., helicopter and chainsaw) which do
not fit our space-specific research objective. Therefore, Im-
age2Reverb is our best-fit dataset.

We re-arrange the Image2Reverb dataset with augmented
reverberant speech samples for the SIAR purpose. Table
1 lists the specifications. The dataset involves 265 scenes
with 235 indoor and 30 outdoor scenarios. There are totally
11,854 paired image-AIR examples and we split them into
non-overlapping train-test partitions with 10,207 and 1,647
sequences, respectively. To augment reverberant speeches,
we randomly select five anechoic speech samples from the
WSJ0 dataset [15] to convolve with each AIR. This setting is
sufficient for characterization of the environment. Moreover,
we resample AIRs and speech waveforms at 22.05 kHz and
truncate them to the same duration of 6 seconds. The space
images are normalized and center-cropped at the size of
224× 224 pixels.

4. Experiments

We directly use a pre-trained visual space recognition
model (i.e., ResNet50 model [9] pre-trained on the Places365
dataset [30]) to extract visual features (dv = 365) in the
Image2Reverb dataset. To characterize space acoustics, we
compute Short-time Fourier Transform (STFT) with a 2048-

1https://github.com/facebookresearch/sound-spaces



Table 2. The results of bi-directional cross-modal retrieval between space images and reverberant speeches.

Model
Speech-to-image retrieval (SIR) Image-to-speech retrieval (ISR)

Indoor Outdoor Total Indoor Outdoor Total
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

DCMR [29] 33.49 33.53 64.55 64.55 35.98 36.02 39.65 50.29 59.85 71.21 41.27 51.97
CSIR (ours) 68.20 68.34 88.16 88.16 69.80 69.93 90.68 95.70 96.97 100.00 91.18 96.05

(a) (b) (c) (d) (e) (f)

Figure 3. The Grad-CAMs for visualizing what the image encoder is looking at. The RGB images (first row) are fed into the pre-trained
image encoder (second row) and our fine-tuned one (bottom row) for SIAR. The varying colors from red to blue correspond to the higher
and lower activation values.

point Hanning window and a hop size of 441. Then, Mel
filter banks are applied to get a 128-D Mel spectrogram.
For Cross-modal Learning (CML), both audio and visual
features are projected into a common space where d = 64
in Eq. 2 and Eq. 3. For evaluation, we use recall at Rank
K as the metric, denoted as R@K (%), which describes
the percentage of queries where the desired label is within
the top K retrieval answers (K=1 or 5). Table 2 gives the
bi-directional retrieval results between space images and
reverberant speeches. We can see that our proposed CSIR
model can successfully perform SIR where R@1 and R@5
equal 69.80% and 69.93%, respectively. On the contrary,
our proposal can retrieve a speech transmitted in the space
specified by a query image i.e., ISR where R@1 and R@5
equal 91.18% and 96.05%, respectively. It achieves superior
results than DCMR [29] in all conditions.

To understand the effect of the image encoder, we use
Gradient-weighted Class Activation Mapping (Grad-CAM)
[7] to analyze which image regions are more related to envi-
ronmental acoustic characteristics. Specifically, Grad-CAM
is a widely used strategy for visually interpreting CNNs by
assigning higher values to more important regions. By de-

fault2, we extract outputs from layer 4 of the original and our
fine-tuned ResNet50 image encoder to generate heat maps in
test images. As illustrated in Fig. 3, high-value features are
observed to be mostly associated with activations of visual
regions related to large reflective regions. For example, in
Fig. 3(b), instead of focusing on the building, the image
encoder tends to pay more attention to the large reflective
meadow. In Fig. 3(e), the ceiling light is highlighted instead
of the stage and the seats, thus is more spatial-related to
the transmitted speech. In summary, Fig. 3 shows that the
fine-tuned image encoder in our proposed CSIR model can
successfully emphasize reflective surfaces, which are more
correlated with environmental acoustics.
5. Conclusion

We proposed a novel task, SIAR, that tackles the bi-
directional retrieval problem between images and speeches
captured in the same space by considering their geomet-
rical correspondence. We proposed the CSIR approach
which adopts cross-modal contrastive learning to achieve
space-aware feature discrimination. The experimental results
demonstrate the efficiency of our proposed speech encoder
and the feasibility of the SIAR task.

2GradCAM: https://github.com/jacobgil/pytorch-grad-cam
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