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Abstract

Recently reported state-of-the-art results in visual
speech recognition (VSR) often rely on increasingly large
amounts of video data, while the publicly available tran-
scribed video datasets are limited in size. In this paper, for
the first time, we study the potential of leveraging synthetic
visual data for VSR. Our method, termed SynthVSR, sub-
stantially improves the performance of VSR systems with
synthetic lip movements. The key idea behind SynthVSR is
to leverage a speech-driven lip animation model that gen-
erates lip movements conditioned on the input speech. As
plenty of transcribed acoustic data and face images are
available, we are able to generate large-scale synthetic data
using the proposed lip animation model for semi-supervised
VSR training. We evaluate the performance of our ap-
proach on the largest public VSR benchmark - Lip Reading
Sentences 3 (LRS3). SynthVSR achieves a WER of 27.9%
when using 438 hours of labeled data from LRS3, which is
on par with the state-of-the-art self-supervised AV-HuBERT
method. Furthermore, when combined with large-scale
pseudo-labeled audio-visual data SynthVSR yields a new
state-of-the-art VSR WER of 16.9% using publicly available
data only, surpassing the recent state-of-the-art approaches
trained with 29 times more non-public machine-transcribed
video data (90,000 hours). Project page: https://
liuxubo717.github.io/SynthVSR/

1. Introduction

Visual speech recognition (VSR) is the task of recogniz-
ing speech content based on visual lip movements. VSR has
a wide range of applications in real-world scenarios such as
improving automatic speech recognition (ASR) in noisy en-
vironments. Recently, with the release of large-scale tran-
scribed audio-visual datasets such as LRS2 [1] and LRS3
[2], deep neural networks have become the mainstream ap-
proach for VSR. However, even the largest public dataset
for English VSR, LRS3, does not exceed 500 hours of
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transcribed video data. The lack of large-scale transcribed
audio-visual datasets potentially results in VSR models that
could only work in a laboratory environment [15].

A common solution to this issue is to collect and annotate
large-scale audio-visual datasets. For example, [19,[20]] col-
lected 90,000 hours of YouTube videos with user-uploaded
transcriptions to achieve state-of-the-art performance on
standard benchmarks. However, such a procedure is expen-
sive and time-consuming, especially for most of the world’s
7,000 languages [21]. If annotations are missing, the ASR
can be used to generate the transcriptions automatically and
this has been shown to be an effective approach to signifi-
cantly improve VSR performance [15]. The other promis-
ing direction is to learn audio-visual speech representations
from large amounts of parallel unlabeled audio-visual data
in a self-supervised approach, and then fine-tune them on
the limited labeled video dataset [21]. Nevertheless, pub-
licly available video datasets are also limited and their us-
age may raise license-relate concerns, barring their use in
commercial applications.

Human perception of speech is inherently multimodal,
involving both audition and vision [21]. ASR, which is a
complementary task to VSR, has achieved impressive per-
formance in recent years, with tens of thousands of hours
of annotated speech datasets [[L7, [10} 3] available for large-
scale training. It is intuitive to ask: Can we improve VSR
with large amounts of transcribed acoustic-only ASR train-
ing data? In this work, we present SynthVSR, a novel semi-
supervised framework for VSR. In particular, we first pro-
pose a speech-driven lip animation model that can generate
synthetic lip movements video conditioned on the speech
content. Next, the proposed lip animation model is used
to generate synthetic video clips from transcribed speech
datasets (e.g., Librispeech [[17]) and human face datasets
(e.g., CelebA [12]). Then, the synthetic videos together
with the corresponding transcriptions are used in combina-
tion with the real video-text pairs (e.g., LRS3 [2]) for large-
scale semi-supervised VSR training. Synthetic videos pro-
vide advantages such as having control over the target text

'Such as LRW [6] and LRS2 [1]] datasets which are only permitted for
the purpose of academic research.
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Figure 1. Scaling up visual speech recognition with synthetic supervision (SynthVSR): we propose SynthVSR, a semi-supervised
framework that can substantially improve the performance of VSR models by using synthetic lip movements. Firstly, we introduce a speech-
driven lip animation model that generates lip movement videos conditioned on input lip images and speech utterances (left). Secondly,
we generate large-scale synthetic videos using transcribed speech datasets and lip images. The combination of synthetic videos and their
corresponding speech transcriptions constitutes the synthetic dataset (centre). Finally, we conduct semi-supervised VSR training with
synthetic and real datasets. Our method substantially improves the performance of VSR models with large-scale synthetic data (right).

and lip image as well as the duration of a generated utter-
ance. To the best of our knowledge, the potential of leverag-
ing synthetic visual data for improving VSR has never been
studied in the literature.

SynthVSR achieves remarkable performance gains with
labeled video data at different scales. We evaluate the
performance of SynthVSR on LRS3 with a Conformer-
Transformer encoder-decoder VSR model [15]. Using the
complete 438 hours from LRS3, SynthVSR achieves a VSR
WER of 27.9% which is on par with the state-of-the-art self-
supervised method AV-HUBERT-LARGE [21] that uses ex-
ternal 1,759 hours of unlabeled audio-visual data, but with
fewer model parameters. Furthermore, following a recent
high-resource setup [13]] which uses additional 2,630 hours
of ASR pseudo-labeled publicly available audio-visual data,
our proposed method yields a new state-of-the-art VSR
WER of 16.9%, surpassing the former state-of-the-art ap-
proaches [19, 20] trained on 90,000 hours of non-public
machine-transcribed data.

2. SynthVSR

In this section, we introduce SynthVSR, a novel semi-
supervised VSR framework to improve the performance of
VSR models using synthetic data, as shown in Figure[T} We
will introduce the VSR model, the speech-driven lip anima-
tion model next. More details are described in the published
CVPR paper [L1]].

2.1. VSR Model

The VSR model we use in this work is based on [[15,[14],
which is an encoder-decoder architecture. The encoder is
comprised of two components, the visual front-end [9} 23]))
and a Conformer [8]] encoder. The decoder is based on the
transformer architecture [24]. The baseline VSR model is
trained end-to-end using a combination of the CTC loss [4]}

22 with an attention-based Cross-Entropy (CE) loss.

2.2. Speech-Driven Lip Animation

Inspired by the recent advances in speech-driven facial
animation [28, 29} 126l 27]], we propose an approach for
speech-driven lip animation that generates videos of talking
mouth regions conditioned on speech utterances. The out-
put space of the lip animation model is the same as the VSR
input space. The proposed lip animation model is based on
a temporal GAN [26} 27]] with two discriminators. We fur-
ther propose a VSR perceptual loss when labeled video data
is available. The architecture of the speech-driven lip ani-
mation model is illustrated in the left part of Figure 2] We
will introduce each component in the next sections.
Generator. The generator G is an encoder-decoder struc-
ture, as shown in the right part of Figure 2] The genera-
tor uses the first frame of a video clip, a speech clip, and
a head rotation sequence as inputs. The speech clip is di-
vided into overlapping chunks. The generator produces the
corresponding video frame for each speech chunk. Specif-
ically, an image encoder F; and a speech encoder F are
used to capture the visual information and speech context
into latent embeddings z; and zs. The head rotations are
provided in the form of sequences of 3D rotation matrices
[29] z. € R3*3 with respect to the first frame. The three
embeddings z;, zs and z,. are concatenated and used to mod-
ulate the convolutional layers in the frame decoder D ¢, e,
which is similar to StyleGAN2 [25]].

Discriminators. The speech-driven lip animation system
has two discriminators: frame discriminator D;,,4 and se-
quence discriminator Dg.,. The frame discriminator op-
erates on the image frame level. and helps enforce visual
consistency. The sequence discriminator operates on the
sequence level to ensure the temporal consistency of syn-
thetic lip movements. Specifically, the frame discriminator
D g is trained on frames that are uniformly sampled from
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Figure 2. Architecture of proposed speech-driven lip animation model. Left: GAN-based speech-driven lip animation model generating
lip movements given a lip image, a speech utterance, and a rotation sequence; Right: structure of the generator in the lip animation model.

a video v using a sampling function S(v). The first frame
vy is fed to the Dy,,g as the condition. The input speech
signal is s. The adversarial loss of the Dy, is defined as:

ﬁg’?fe = Ey [log Dimg(S(v),v1)]

(D
+Ey s[10g(1 = Djpng(S(G(s,v1)),v1)].

D, operates on the entire sequence video v. The adver-
sarial loss of the Dy, is defined as follows:

Egzgsc = E’U [1Og Dseq (U)]+

E, s[l0g(1 = Dyeg (G(s,v1))]- @

VSR Perceptual Loss. We further propose to optimize
the lip animation model towards a VSR perceptual loss if
labeled video data is available. We first pre-train a VSR
model as introduced in Section[2.1] The proposed VSR per-
ceptual loss corresponds to a weighted sum of feature dis-
tances computed from the visual front-end and the Trans-
former decoder of the pre-trained VSR model for real and
generated samples. We use L; norm to measure the visual
embedding distance and Kullback-Leibler (KL) divergence
to measure the logits distribution distance, respectively. The
VSR perceptual loss is obtained by:

LVSR == Avisual ||Z;f - Z;H1 + )\logits KL(Q"', QS)7 (3)

where 2} and z} are the VSR front-end visual features of the
real and synthetic video, respectively, 3" and ¢° is the VSR
predicted logits distribution of real and synthetic video, re-
spectively, Ayisuar and Ajog4¢s control the weights of these
two perceptual losses. The VSR model is frozen during the
lip animation model training.

Training Objectives. The speech-driven lip animation
model is trained using a combination of a reconstruction
loss, adversarial losses, and a VSR perceptual loss. The
reconstruction loss is computed based on the L; distance
between the generated video ¢ and ground truth video v:

Lyce =|lv—10|;. 4)

The overall training loss for the lip animation model is:
__\img pimg seq pseq
EAnimation - )‘discﬂdisc + Adiscﬁdisc (5)
+)\rec£rec + EVSR»

where X;""9 A\5°? | and A, represent the coefficient of the
adversarial loss of frame discriminator D;,, 4, the adversar-
ial loss of sequence discriminator D4, and the reconstruc-

tion loss, respectively.

3. Experiments
3.1. Dataset

VSR Benchmark. We conduct experiments on the LRS3
[2] dataset, which is the largest public benchmark for En-
glish VSR containing 438.9 hours of video clips from TED
talks (408, 30, and 0.9 hours in the pre-training, training-
validation, and test set, respectively).

Datasets for Speech-Driven Lip Animation Training.
The lip animation model is trained on a combination of
LRS3 (pre-training and training-validation splits) and the
English subset (933 hours) of AVSpeech [7] datasets.
Datasets for Synthetic Data Generation. We use Lib-
rispeech [17], TED-LIUM 3 [10], Common Voice (English
split) [3[] datasets as the speech sources. We use the CelebA
[12] dataset as a source of lip images. For each speech clip,
we randomly sample one image from CelebA to generate
one synthetic video. We use a static rotation matrix in the
generation process. In total, 3,652 hours of synthetic video
clips are generated for scaling up VSR training.

3.2. Implementation Details

We describe the implementation details of VSR models
and speech-driven lip animation models here. More details
are described in the published CVPR paper [11]].

VSR Model. We consider two model configurations:
(1) Conformer-BASE (250M) with 12-layer Conformer



Method Backbone LM Labeled data (hrs) Unlabeled data (hrs) Synthetic data (hrs) WER (%)
AV-HuBERT-BASE [21] Transformer X 433 1,759 - 34.8
Makino et al. [16] Transformer X 31,000 - - 33.6
Ma et al. [13] Conformer v 1,459% - - 315
Prajwal et al. [18] Transformer v 2,676 - - 30.7
AV-HuBERT-LARGE [21] Transformer X 433 1,759 - 28.6
AV-HuBERT-LARGE w. Self-Training [21] Transformer X 433 1,759 - 26.9
Auto-AVSR [13] Conformer v 3,4481; - - 19.1
Serdyuk et al. [20] Transformer X 90,0001 - - 259
Serdyuk et al. [[19] Transformer X 9O,OOOT - - 17.0
X 438 - - 36.7
X 438 - 3,652 28.4
SynthVSR Conformer-BASE ‘; 3"‘328 i 3’6_5 2 ;Zg
X 3,068 - 3,652 19.4
v 3,068 - 3,652 18.7
X 3,068 - 3,652 18.2
SynthVSR Conformer-LARGE v 3.068 ) 3.652 16.9

Table 1. Experimental results of LRS3 & high-resource labeled data setting on LRS3 (test). LM denotes whether or not a language model
is used in the decoding. 'Includes non-publicly available data. *Includes datasets that are only permitted for the purpose of academic

research. hrs is an abbreviation for hours.

encoder, 6-layer Transformer decoder; (2) Conformer-
LARGE (783M) with 24-layers Conformer encoder, 9-layer
Transformer decoder.

Speech-Driven Lip Animation. We consider two lip an-
imation model configurations. First, The lip animation
model with the BASE VSR model trained on LRS3 is re-
ferred to as LAM-LRS3-VSR-VL. Second, the lip anima-
tion model with the BASE VSR model trained on LRS3 and
2,630 hours of pseudo-labeled AVSpeech and VoxCeleb2 is
referred to as LAM-LRS3-AVoX-VSR.

3.3. LRS3 Labeled Data Setting

We report the results when using the full 438 hours
of LRS3. Experiments are conducted on the BASE VSR
model. The results are shown in Table [[Il Our BASE
model achieves WER 36.7% when using 438 hours of
LRS3 data for training. We generate 3,652 hours of syn-
thetic data using the LAM-LRS3-VSR-VL model. Using
3,652 hours of synthetic data and 438 hours of LRS3 la-
beled data, the BASE VSR model achieves the WER 27.9%
(28.4% w/o language model, corresponding to a WER re-
duction of 8.3%). Our method outperforms three recent ap-
proaches using 31,000 (33.6%), 1,459 (31.5%), and 2,679
(30.7%) hours of labeled data, respectively. When com-
pared with the state-of-the-art self-supervised method AV-
HuBERT [21]] that uses an additional 1,759 hours of unla-
beled audio-visual data, our method outperforms the AV-
HuBERT-BASE model (34.8%) by a large margin. Our
method slightly performs better than the AV-HuBERT-
LARGE model (28.6%), but with fewer model parameters
(our BASE model 250M vs AV-HuBERT-LARGE 390M).
Note that we compare with the AV-HuBERT results without
self-training as we do not use the pseudo-labeled 933 hours

of AVSpeech subset for VSR training.
3.4. High-Resource Labeled Data Setting

We further evaluate the scalability of SynthVSR: when
using machine-transcribed AVSpeech [7] and VoxCeleb2
[S] as additional training data. We use the 3,652 hours of
synthetic data generated by LAM-LRS3-AVoX-VSR and
conduct experiments on BASE and LARGE models. We
first train the BASE model with 438 hours of labeled LRS3
and 2,630 hours of pseudo-labeled data, resulting in a strong
VSR baseline with the WER 21.2%. By using additional
3,652 hours of synthetic data, the WER of the BASE model
improves to 18.7% (19.4% w./o. language model), which
outperforms [[13]] that uses additional labeled dataset LRS2
(223 hours) and LRW (157 hours) for training. Although
the VSR model has seen a large amount of labeled data,
and the speech-driven lip animation model is trained from
part of the VSR training data, synthetic data can still lead
to considerable performance gains. Furthermore, increas-
ing the model size from BASE to LARGE results in bet-
ter VSR performance with the WER of 16.9% (18.2% w./o.
language model), which is the current state-of-the-art per-
formance on LRS3, with publicly available data only.

4. Conclusion

We have presented a semi-supervised method for VSR
enhanced with synthetic lip movements. The speech-driven
lip animation model is proposed to generate synthetic video
data from labeled speech datasets and face images for scal-
ing up VSR. Our method achieves state-of-the-art results on
LRS3, outperforming prior work trained on more labeled or
unlabeled real video data. Our work fosters future research
on generating and exploiting synthetic visual data for VSR.
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