Sound to Visual Scene Generation by Audio-to-Visual Latent Alignment
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Figure 1: Sound-to-image generation. We propose a model that synthesizes images of natural scenes from the sound. Our
model is trained solely from paired audio-visual data, without labels or language supervision. Our model’s predictions can
be controlled by applying simple manipulations to the input waveforms (left), such as by mixing two sounds together or by
adjusting the volume. We can also control our model’s outputs in latent space, such as by interpolating in directions specified

by sound (right).
Abstract

How does audio describe the world around us? In this
paper, we propose a method for generating an image of a
scene from sound. Our method addresses the challenges of
dealing with the large gaps that often exist between sight
and sound. We design a model that works by scheduling the
learning procedure of each model component to associate
audio-visual modalities despite their information gaps. The
key idea is to enrich the audio features with visual informa-
tion by learning to align audio to visual latent space. We
translate the input audio to visual features, then use a pre-
trained generator to produce an image. To further improve
the quality of our generated images, we use sound source
localization to select the audio-visual pairs that have strong
cross-modal correlations. We obtain substantially better
results on the VEGAS and VGGSound datasets than prior
approaches. We also show that we can control our model’s

predictions by applying simple manipulations to the input
waveform, or to the latent space.

1. Introduction

Humans have the remarkable ability to associate sounds
with visual scenes, such as how chirping birds and rustling
branches bring to mind a lush forest, and the flowing water
conjures the image of a river. These cross-modal associations
convey important information, such as the distance and size
of sound sources, and the presence of out-of-sight objects.

In this work, we propose Sound2Scene, a sound-to-image
generative model and training procedure, which can be
trained solely from unlabeled videos. First, given an im-
age encoder pre-trained in a self-supervised way, we train a
conditional generative adversarial network [4] to generate
images from the visual features of the image encoder. We
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Figure 2: Sound2Scene framework. The frame selection method selects the highly correlated frame-audio segment from a
video for training. Then, we train Sound2Scene to produce an audio feature that aligns with the visual feature extracted from
the pre-trained image encoder. In the inference stage, the extracted audio feature from input audio is fed to the image generator

to produce an image.

then train an audio encoder to translate an input sound to its
corresponding visual feature, by aligning the audio to the
visual space. Afterwards, we can generate diverse images
from sound by translating from audio to visual embeddings
and synthesizing an image. Since our model must be ca-
pable of learning from challenging in-the-wild videos, we
use sound source localization to select moments in time that
have strong cross-modal associations.

We evaluate our model on VEGAS [22] and VG-
GSound [6], as shown in Fig. m Our model can synthesize a
wide variety of different scenes from sound in high quality,
outperforming the prior arts. It also provides an intuitive
way to control the image generation process by applying ma-
nipulations at both the input and latent space levels, such as
by mixing multiple audios together or adjusting the loudness.
Our main contributions are summarized as follows:

* Proposing a new sound-to-image generation method that
can generate visually rich images from in-the-wild audio
in a self-supervised way.

* Generating high-quality images from the unrestricted di-
verse categories of input sounds for the first time.

* Demonstrating that the samples generated by our model
can be controlled by intuitive manipulations in the wave-
form space in addition to latent space.

» Showing the effectiveness of training sound-to-image gen-
eration using highly correlated audio-visual pairs.

2. Method

The goal of our work is to learn to translate sounds into
visual scenes. Most of the existing methods [20, [7, (10} [12]
train GANSs to directly generate images from the raw sound
or sound features. However, the large variability of visual
scenes make the task of directly predicting images from

sound challenging.

In contrast to prior approaches, we sidestep these chal-
lenges by breaking down the task into sub-problems. Our
proposed Sound2Scene pipeline is illustrated in Fig. 2 It
is composed of three parts: an audio encoder, an image en-
coder, and an image generator. First, we pre-train a powerful
image encoder and a generator conditioned by the encoder,
separately with a large image dataset alone. Since there is
a natural correspondence between sound and visual infor-
mation, we exploit this natural alignment and transfer the
discriminative and expressive visual information from the
image encoder into audio representation. In this way, we
construct a joint audio-visual embedding space that is trained
in a self-supervised manner using only in-the-wild videos.
Later, the audio representation from this aligned embedding
space is fed into the image generator to produce images
corresponding to the input sound.

2.1. Learning the Sound2Scene Model

Using the audio-visual data pairs D = {V;, 4;}Y,
where V; is a video frame, and A; is audio, our objective is to
learn the audio encoder to extract informative audio features
z® that are aligned well with anchored visual features zV .
Specifically, given the unlabeled data pairs D, the audio en-
coder f4(+), and the image encoder fy (-), we extract audio
features z4=f(A) and visual features zV = fy, (V), where
zV,z% € R?8. Since we exploit the well pre-trained
image encoder fy (-), the visual feature zV serves as the
self-supervision signal for the audio encoder to predict the in-
formative feature z* in the way of feature-based knowledge
distillation [14}[11]. These aligned features across modalities
construct the shared audio-visual embedding space on which
the image generator G(-) is separately trained compatibly.

To align the embedding spaces defined by the heteroge-



neous modalities, a metric learning approach can be used.
Representations are aligned if they are close to each other
under some distance metric. A simple approach to align
the features of z® and zV is to minimize the L distance,
|zV — z*||o. However, we discover that solely using Lo
loss can only teach the relationship between two different
modalities within the pair without considering the other un-
paired samples. This results in unstable training and leads
to poor image quality. Therefore, we use InfoNCE [16]
as a specific type of contrastive learning, which has been
successfully applied to audio-visual representation learn-

ings [[1L 5, 1818} 21. [15]:

InfoNCE(ay, {b}iL;) = —log s=r n a2, (1)
where a and b denotes arbitrary vectors with the same dimen-
sion, and d(a, b) = ||a — b||2. With this loss, we maximize
the feature similarity between an image and its true audio
segment (positive) while minimizing the similarity with the
randomly selected unrelated audios (negatives). Given the
j-th visual and audio feature pair, we first define our audio
feature-centric loss as Lf = InfoNCE(ZjA, {z2V}), where
2™ and 2V are representations with unit-norm. To make our
objective symmetric, we compute the visual feature-centric
loss term as L} = TnfoNCE(z,, {z*}). Then, our final
learning objective is to minimize the sum of each loss term
for all the audio and visual pairs in the mini-batch B:

Liotal = 35 g (LA + LY) . ©)

After training the audio encoder with Eq. @, our model
learns visually enriched audio features that are aligned with
the visual features. Thus, we can directly feed the learned
audio feature z* with noise vector zN ~ N(0, I) to the
frozen image generator as G(zN,z®) to generate a visual
scene at the inference stage.

2.2. Architecture

All the following modules are separately trained accord-
ing to the proposed steps.
Image encoder fy (-). We use ResNet-50 [13]. To cope
with general visual contents, we train the image encoder in a
self-supervised way [3]] with ImageNet [9] without labels.
Image generator G(-). We use the BigGAN [2]] architec-
ture to deal with high-quality generation and a large variabil-
ity of scene contents. To make the BigGAN a conditional
generator, we follow the modification of the input condition
structure of ICGAN [4]]. We train the generator to gener-
ate photo-realistic 128 x 128 resolution images from the
conditional visual embeddings zV obtained from the image
encoder. To train the generator, we use ImageNet without
labels in a self-supervised way. While training the image
generator, the image encoder is pre-trained and fixed.
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Figure 3: Comparison to the baseline and existing
sound-to-image method [10]]. Our method outperforms the
others both qualitatively and quantitatively in the VEGAS
dataset.

Audio encoder f4(-). We use ResNet-18, which takes
the spectrogram as input. After the last convolutional layer,
adaptive average pooling aggregates temporal-frequency in-
formation into a single vector. The pooled feature is fed into
a single linear layer to obtain an audio embedding z*. The
audio network is trained on either VGGSound or VEGAS
with the loss in Eq. (2) according to target benchmarks.

2.3. Audio-Visual Pair Selection Module

Learning the relationship between the images and sounds
accurately requires highly correlated data pairs of two modal-
ities. Knowing which frame/segment in the video is infor-
mative for audio-visual correspondence is not an easy task.
One straightforward way to collect data pairs for training,
D, is to extract a mid-frame of the video with the corre-
sponding audio segment [13] [5]. However, the mid-frame
cannot guarantee to contain informative corresponding audio-
visual signals [19]. To this end, we leverage a pre-trained
sound source localization model [19] and extract highly
correlated audio and visual pairs. The backbone networks
of enable us to have fine-grained temporal time steps of
audio-visual features, q® and qV, respectively. Correlation
scores are computed by C,, [t] = qY - g at each time step.
After computing the correlation scores, C,,, are sorted by
top—k(Cygy|t]). With this correlated pair selection method,
we annotate t op—1 moment frames for each video in the

SalElﬁﬁéP-'ﬁﬁéi’ﬁ use them for training.

We validate our method on the VGGSound and VEGAS
datasets both qualitatively and quantitatively. Here, we in-
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Figure 4: Generated images by mixing two different au-
dios in the waveform space.

i <——— Rail Transport ~ ——p

A «———  Arplane Fiypy —— i

Figure 5: Generated images by changing the volumes of
the input audio in the waveform space. As the volume
increases, the objects of the sound source become larger or
more dynamic.

troduce only partial results of our extensive experiments.
As shown in Fig. [3] our method outperforms the previous
method on Frechet Inception Distance (FID), Inception score
(IS), and image-to-text retrieval, denoted as CLIP retrieval
(R@Xk). Furthermore, our method generates more clear and
realistic images compared to the prior arts.

We qualitatively observe that Sound2Scene generates vi-
sually plausible images compatible with a single input wave-
form, as shown in Fig.m Furthermore, we observe that the
model can perform similarly to human perception. We vary
the input types to investigate how accurately Sound2Scene
can capture the relationships between vision and different
characteristics in the sound. Our model can capture a single
instance that makes the sound, multiple sound characteristics
(Fig.[), and even the volume changes (Fig.[5) of the same
sound by making the dog bigger or by making strong streams
while increasing the volume. As for further application, our
model can take both image and audio together and generate
images conditioned on the composition of multiple modali-
ties (Fig.[6), or edit the given image by changing the volume
of the corresponding sound (Fig. [7).

4. Conclusion

In this paper, we propose Sound2Scene, a model for gen-
erating images that are relevant to the given audio. This
task inherently has challenges: a significant modality gap be-
tween audio and visual signals, such that audio lacks visual
information, and audio-visual pairs are not always corre-
spondent. Existing approaches have limitations due to these
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Figure 6: Generated images conditioned on image and
audio. We interpolate between a given visual feature and an
audio feature in the latent space. This interpolated feature is
then fed to the image generator to get a novel image.
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Figure 7: Image editing by volume changes in latent space.
We extract an image feature and noise vector by GAN inver-
sion, and two audio features with different volumes. Then,
we move the image feature in the direction of the audio fea-
ture differences.

difficulties. We show that our proposed method overcomes
these challenges in that it can successfully enrich the audio
features with visual knowledge, selects audio-visually cor-
related pairs for learning, and generates rich images with
various characteristics. Furthermore, we demonstrate our
model allows controllability in inputs to get more creative
results, unlike the prior arts. We would like to note that our
proposed learning approach and the audio-visual pair selec-
tion method are independent of the specific design choice
of the model. We hope that our work encourages further
research on multi-modal image generation.
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