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Abstract

Egocentric videos are close records of the human’s field
of vision, making action recognition within them crucial for
understanding human behavior and intentions. When rec-
ognizing actions in egocentric videos, we usually extract
and use the data of several modalities (such as RGB, op-
tical flow, and audio), and simultaneously predict the verb
and noun of actions. Thus, egocentric action recognition
can be viewed as a Multi-Input Multi-Output (MIMO) prob-
lem as it contains characteristics of both multimodal and
multitask. These characteristics bring some challenges that
have not been adequately explored so far. First, the opti-
mization objectives between different tasks could conflict,
impacting the quality of feature representations. Second,
the phenomenon of modality imbalance becomes more com-
plex, different tasks may bias on different modalities. To ad-
dress the first challenge, we propose a query-based fusion
architecture with specific task tokens to query task-specific
features. For the second challenge, we propose an attention
modulation strategy. An attention allocating loss and real-
locating strategy are performed to improve the training and
inference phase respectively. By identifying and addressing
the challenges in the MIMO problem, our proposed methods
boost the performance of egocentric action recognition.

1. Introduction
Learning and understanding egocentric videos has be-

come a research hotspot in the computer vision community
in recent years. An egocentric video is generally recorded
by head-mounted cameras, showing the wearer’s field of
vision. Thus, egocentric videos can indicate the attention
and intentions of the wearer, playing an important role in
human gaze prediction [8], human object interaction [14],
and human action anticipation [6]. The research on ego-
centric video can further be applied to many fields, such as
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Figure 1. An illustration of challenges in a MIMO problem. Top:
An example of task conflict, the training objectives of two tasks are
conflicting. Bottom: An example of task-aware modality bias, for
different tasks, the modalities with highest unimodal confidence
are not the same.

AR/VR [13], and embodied AI [10].
Action recognition is a basic and important task in video

understanding. The action recognition task in egocentric
videos has two characteristics: First, egocentric videos usu-
ally contain multiple different modalities (e.g., RGB, opti-
cal flow, and audio), which describe egocentric scenes from
various aspects and all provide valuable information for ac-
tion recognition. Second, in egocentric videos, an action
can be usually described as a verb-noun phase [4], thus
the action recognition task in egocentric videos requires the
accurate classification of both verb and noun. In conclu-
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Figure 2. (a): A classic model architecture for multimodal learning, we use it as our overall model architecture. (b): Our proposed query-
based fusion architecture, which contains several specific task tokens. (c): Scaled dot-product attention module during the training phase,
our proposed attention allocating loss is performed to improve training. (d): Scaled dot-product attention module during the inference
phase, exp represents exponential operation. The weighted softmax operation is performed to reallocate the contribution of each modality.

sion, the egocentric action recognition task is a Multi-Input
Multi-Output (MIMO) problem.

The characteristic of MIMO brings two challenges on
recognizing egocentric actions. (1) Task conflict. The char-
acteristic of multi-output could lead to conflict between two
tasks when these two tasks share the same feature space.
An example is shown in the top of Fig. 1. For the task of
verb classification, samples open fridge and open cupboard
should be close in the feature space, while samples open
fridge and close fridge should be far apart. However, for the
task of noun classification, an opposite optimization objec-
tive is expected. Previous methods [12, 11] overlooked this
point. They simply obtain a shared feature representation
for all tasks. (2) Task-aware modality bias. Due to the
heterogeneity of multimodal data, the modality imbalance
phenomenon [17] is widely existing in multimodal learn-
ing. In the MIMO problem, a more complex phenomenon
exists as different tasks may bias on different modalities.
The unimodal confidence of an example is shown in the
bottom of Fig 1. For the verb classification task, the op-
tical flow modality has the highest confidence, while for the
noun classification task, the RGB modality has the highest
confidence, the optical flow modality even has the lowest
confidence. Although some balanced multimodal learning
methods have been proposed to address the modality im-
balance phenomenon [20, 17, 21], they are not applicable
for addressing the imbalance issue in the MIMO problem.
These methods are mainly designed for modulating a sin-
gle task and could not tackle the difference of modality bias
between different tasks.

In this paper, we betake to address the above ignored or
unsolved challenges. First, for the challenge of task con-
flict, we propose a query-based fusion architecture to inte-
grate different modalities, as shown in Fig. 2 (b). We set
a specific token for each task (task token), and concatenate

the task tokens with feature tokens. Then tokens are fed
into a multi-head attention layer. Task tokens in the output
are used to perform the corresponding task. In this manner,
task tokens can query task-specific features, thereby elim-
inating the commonality of the feature space among dis-
tinct tasks. Second, for the challenge of task-aware modal-
ity bias, we further propose an attention modulation strat-
egy, which draws inspiration from the learning and testing
process of middle school students. During regular prac-
tice, more attention should be devoted to hard and mis-
taken questions, while during the exam, correctness is the
most important, and easy questions should be answered at
first. We apply a similar modulation strategy on the query-
based fusion module. In the training phase, we perform
an attention allocating loss to encourage each task token to
pay more attention to corresponding non-dominated modal-
ities [16] via a task-aware metric, guiding the model to be
trained more adequately. In the inference phase, we real-
locate the contribution of each modality, encouraging each
task token to pay more attention to the corresponding dom-
inated modality, as the dominated modality is usually more
reliable. Extensive experiment results indicate that our pro-
posed methods improve the recognition performance. Our
contributions can be summarized as follows:

• We view egocentric action recognition as a MIMO
problem and identify two ignored but important chal-
lenges: task conflict and task-aware modality bias.

• We propose a query-based fusion architecture with
specific task tokens to tackle the challenge of task con-
flict and an attention modulation strategy for the chal-
lenge of task-aware modality bias.

• Experiment results show that our proposed methods ef-
fectively improved recognition performance.



2. Method
2.1. Query-based Fusion Architecture

In multimodal learning, a classic model architecture usu-
ally consists of modality-specific encoders, a fusion layer,
and several task heads, as shown in Fig. 2 (a). Most existing
fusion layers simply produce a shared feature representation
for all tasks, thus suffering from the task conflict because all
task heads share the same feature space.

Inspired by DETR [2], we propose a query-based fusion
architecture. For each task, we set a specific token to query
task-specific features individually, thus different tasks no
longer need to share the same feature space. Specifically,
we use Video Swin Transformer [15] as the encoder for all
modalities. Data of the audio modality is transformed into
spectrograms at first. We represent the output feature maps
of the modality m as fm ∈ Rt×h×w×c, where t, h, w, c are
temporal length, height, width and the number of channels
of feature maps. Following Pixel-BERT [9], we tokenize
feature maps by flatting them on temporal and spatial di-
mensions. All feature tokens and task tokens are concate-
nated to a feature sequence F . Then, F is fed into a standard
multi-head attention layer, guiding different task tokens to
query task-specific features. Eventually, we obtain distinct
representations for different tasks.

In practice, we set two task tokens (one for verb and an-
other for noun) and three input modalities (RGB, optical
flow, and audio), hence the length of F is l = 3 × t × h ×
w + 2. Fig. 2 (b) shows the details of our proposed query-
based fusion architecture.

2.2. Attention Allocating in the Training Phase

By performing the query-based fusion architecture, we
have solved the challenge of task conflict. To further over-
come the challenge of task-aware modality bias, we propose
the attention modulation strategy, which contains two parts:
attention allocating in the training phase, and attention real-
locating in the inference phase. We will introduce them in
this section, and the next section, respectively.

Due to the widely existing modality imbalance phe-
nomenon, in the multi-head attention layer, task tokens tend
to query features from the dominated modality [16], as the
dominated modality tends to converge more quickly. This
could lead to optimization suppression of non-dominated
modalities and inadequate training of the model.

To tackle the problem, we propose to allocate the similar-
ity in attention matrix among different modalities, guiding
task tokens to pay more attention to non-dominated modal-
ities, to alleviate the suppression of non-dominant modal-
ities, as shown in Fig. 2 (c). We select uncertainty as the
metric to discern the dominated modality. We set an ex-
tra unimodal classification layer for each modality to obtain
the unimodal uncertainty. The unimodal uncertainty is cal-

FA AA AR verb noun action

concatenation (baseline) ✗ ✗ 52.12% 36.37% 24.47%
query-based ✗ ✗ 54.38% 41.04% 27.81%
query-based ✓ ✗ 55.33% 42.31% 28.52%
query-based ✓ ✓ 55.46% 42.66% 28.86%

Table 1. Experiment results of our proposed method. FA repre-
sents fusion architecture; AA represents attention allocating; AR
represents attention reallocating.

culated as the entropy of the prediction distribution [18].
We represent the attention matrix in the multi-head atten-

tion layer as A ∈ Rn×l×l, where n is the number of heads.
In the k-th head, suppose the sum of attention similarity
between the verb task token and all tokens from the i-th
modality is ski , the unimodal uncertainty of the i-th modal-
ity is ui. Then, the allocating loss of the verb classification
task is:

Lv
alloc =

1

n
Σ3

i=1Σ
3
j=1Σ

n
k=1max(0, uj−ui)∗max(0, skj−ski ),

(1)
where ui, uj are unimodal uncertainty of i-th and j-th
modality. The loss of the noun classification task Ln

alloc is
calculated in the same way. We also set two cross-entropy
losses for verb and noun classification tasks, respectively,
represent them as Lv

ce and Ln
ce. The total loss is:

L = Lv
ce + Ln

ce + λ(Lv
alloc + Ln

alloc), (2)

where λ is the hyper-parameter that balance the cross-
entropy loss and the allocating loss.

2.3. Attention Reallocating in the Inference Phase

In the training phase, we add an allocating loss to im-
prove the optimization of the model. In the inference phase,
the parameters of the model will not be updated, we pro-
pose to guide the model to pay more attention to the dom-
inated modality as the feature representation of the domi-
nated modality is usually more powerful. To achieve this,
we propose a weighted softmax operation to reallocate the
contribution of each modality, as shown in Fig. 2 (d).

Suppose the element in the x-th row, y-th column and k-
th head in the pre-normalized attention matrix in the multi-
head attention module is mk

x,y , the standard softmax opera-
tion in the scaled dot-product attention is calculated as:

akx,y =
exp(mk

x,y)

Σl
y′=1

exp(mk
x,y′ )

, (3)

where akx,y is the element in normalized attention matrix.
Compared to this, our proposed weighted softmax opera-
tion apply weighting to each element of the matrix, it is
calculated as:

akx,y =
wy ∗ exp(mk

x,y)

Σl
y′=1

wy′ ∗ exp(mk
x,y′ )

, (4)



fusion method verb noun action

concatenation 52.12% 36.37% 24.47%
summation 51.62% 37.90% 24.90%

gating fusion [1] 53.76% 36.34% 25.25%
mid-level fusion [12] 52.52% 34.71% 23.92%
query-based (ours) 54.38% 41.04% 27.81%

Table 2. Comparison of existing fusion methods and our proposed
query-based fusion architecture.

modulation method verb noun action

None 52.12% 36.37% 24.47%
OGM (v) [17] 52.53% 36.91% 25.05%
OGM (n) [17] 52.01% 36.77% 24.56%

Table 3. Results of applying the balanced multimodal learning
method OGM, OGM (v) represents obtaining the discrepancy ratio
from verb classification layer, and OGM (n) represents obtaining
the discrepancy ratio from noun classification layer.

where wy is the weight of the mk
x,y . For each modality, we

set a unified weight for all tokens from it. By adjusting the
weight, we can achieve a simple but effective modulation to
reallocate the contribution of each modality.

3. Experiment
3.1. Experiment Settings

We perform all experiments on the EPIC-KITCHENS-
100 [4] dataset, which contains egocentric videos of 100
hours that are recorded in kitchen scenes with annotations
of 89,777 egocentric actions. To quickly verify the effec-
tiveness of the proposed method, We sampled a quarter of
the data from the training set for model training. For all
modalities, the backbone is Video Swin-T [15] from Omni-
vore [7] pretrained on ImageNet [5], Kinetics-400 [3], and
SUN RGB-D [19] datasets. The hyper-parameter λ is set to
0.1. For each video clip, we sample 8 frames for training.
We train the model for 60 epochs. Except for the aforemen-
tioned settings, the rest of the configurations are the same
as those in Omnivore [7]. All experiments are performed
on two GeForce RTX 3090 GPUs.

3.2. Results and Analysis

Effectiveness of the proposed method. Experiment re-
sults are shown in Tab. 1. We should focus our attention
on three points. First, all of our proposed query-based fu-
sion architecture, attention allocating loss, and attention re-
allocating strategy can bring progress in recognition perfor-
mance. The overall performance boosting is 4.39%. Sec-
ond, compared to the verb classification task, our proposed
query-based fusion architecture shows a more noticeable
improvement in the noun classification task. This could
be due to that noun classification is more challenging than
verb classification. The noun classification task is influ-

enced to a greater extent when two tasks share the same
feature space. Third, though the performance improvement
of our proposed attention reallocating strategy is not very
significant, it should be noted that it is a train-free method,
it can be directly applied to more pretrained models which
contain our proposed query-based fusion architecture with
almost no additional computational cost.

Comparison of existing fusion methods. To further
illustrate the superiority of the proposed query-based fu-
sion architecture, we perform experiments with more fusion
methods, including summation, gating fusion [1], and mid-
level fusion [12], they are all widely-used fusion methods
in multimodal learning. Results are shown in Tab. 2, our
method surpasses all of them by at least 2.5%, this could
because these previous methods still just output a shared
feature representation for all tasks. These results further
demonstrate the importance of special task tokens.

Applying balanced multimodal learning method. We
also show the results of applying the balanced multimodal
learning method OGM [17]. OGM is a representative bal-
anced multimodal learning method, it obtains a discrepancy
ratio from the final classification layer and alleviates modal-
ity imbalance via modulating backward gradients of dif-
ferent modalities. The fusion method is set to concatena-
tion, as concatenation is the default fusion method in OGM.
We both show the results of obtaining the discrepancy ratio
from verb and noun classification layer, as in Tab. 3. OGM
can only achieve very limited performance improvements,
indicating that OGM is not suitable for addressing the issue
of modality imbalance in the MIMO problem.

4. Conclusion

In this paper, we view the egocentric action recognition
task as a MIMO problem. We point out the challenges of
task conflict and task-aware modality bias. A query-based
fusion architecture and an attention modulation strategy are
proposed to tackle these challenges, respectively. Exper-
iment results show that the recognition performance can
be significantly enhanced by solving these challenges. We
hope our work can bring further inspiration in the area of
multimodal learning and egocentric video understanding. In
the future, we will perform large-scale experiments and per-
form our proposed method on more egocentric datasets, to
further evaluate the effectiveness of our proposed method.
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