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Abstract

Augmented reality (AR) requires the seamless integration
of visual, auditory, and linguistic channels for optimized
human-computer interaction. While auditory and visual in-
puts facilitate real-time and contextual user guidance, the
potential of large language models (LLMs) in this land-
scape remains largely untapped. Our study introduces an
innovative method harnessing LLMs to assimilate informa-
tion from visual, auditory, and contextual modalities. Fo-
cusing on the unique challenge of task performance quan-
tification in AR, we utilize egocentric video, speech, and
context analysis. The integration of LLMs facilitates en-
hanced state estimation, marking a step towards more adap-
tive AR systems. Code, dataset, and demo will be available
at https://github.com/nguyennm1024/misar.

1. Introduction
The effective design of augmented reality (AR) systems

hinges on multimodal interfaces, blending visual, auditory,
and linguistic elements to optimize human-computer inter-
actions. When traditional text-based methods (e.g keyboard
input) are not feasible or efficient for communication, au-
ditory communication becomes vital, enabling real-time as-
sistance even when visual information is limited. Similarly,
visual data interpretation enhances AR system functionality
by analyzing the user’s environment, allowing for contex-
tual support and proactive guidance. These auditory and
visual capabilities together [11] contribute to a more pre-
dictive and responsive AR system, thereby elevating the ef-
ficiency and accuracy of task completion.

The evolution of large language models (LLMs) has ele-
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Figure 1. Architecture of the proposed multimodal integration
model, highlighting GPT3.5-Turbo (aka ChatGPT) as a central
component. The model seamlessly integrates video-to-text, text-
to-speech, audio-speech recognition, and GPT3.5-Turbo. How-
ever, errors may be induced during the video-to-text conversion
process, and the model does not encompass understanding of en-
vironmental audio

vated language from a basic communication tool to a critical
modality in computational reasoning and decision-making,
integrating elements of context interpretation and inferen-
tial reasoning into the computational process [18, 5, 9, 6].
While significant research has been dedicated to converting
various sensory modalities into textual formats for applica-
tions such as video narration and complex dialog systems
[18, 16, 8, 5], these studies have yet to robustly address the
intricate challenges specific to the augmented reality (AR)
environment.

Building on previous research, we introduce a novel
method that integrates multiple modalities—visual, audi-
tory, and contextual—using language models for reasoning
and human interaction [18, 5, 9, 6]. Specifically, we ad-
dress the unexplored problem of applying language mod-
els to AR for task performance quantification through ego-
centric video, speech, and context analysis. Our proposed
architecture, illustrated in Fig. 1, positions GPT3.5-Turbo
as the central component, aggregating information from di-
verse sources including visual cues, user and recipe inputs,
and auditory data. These inputs inform GPT3.5-Turbo’s
contextually relevant responses and enable accurate state es-
timation of the user. The goal is to leverage the reasoning
capabilities of language models to fill existing gaps in state
estimation, moving towards a fully intelligent system.

In summary, our work makes two main contributions.
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First, we introduce a comprehensive approach that uses
AI to assist people in working more accurately and effi-
ciently. Second, we show that using Large Language Mod-
els (LLMs) to enhance video captions improves the quality
of these descriptions, enabling effective scene understand-
ing without training with domain specific data. These con-
tributions significantly advance the field of intelligent com-
putational systems.

2. Related Works
Our work encompasses multiple modalities, including

speech, video, and natural language. In this section we
highlight the related work to build the system that we aim.
Large Language Models: Large Language Models
(LLMs), a remarkable advancement in artificial intelligence
(AI), have instigated transformative changes across multiple
disciplines, including computer vision [17, 12], natural lan-
guage processing [13, 10], and speech processing [15, 4].
Their implications extend to augmented and virtual reality
(AR/VR), where they have the potential to serve as critical
components. LLMs excel in language comprehension, rea-
soning, and response generation, rendering them effective
decision-making cores in complex systems. In the proposed
framework detailed in this paper, we employ GPT-3.5 [3]
from GPT3.5-Turbo to serve as the decision-making ”brain”
of the system. This highlights the pivotal role that LLMs,
particularly GPT-3.5, can play in enhancing the capabilities
of AR/VR systems.
Video Captioning: The task of generating natural language
descriptions from video, encompassing both third-person
and egocentric perspectives, has garnered significant atten-
tion within the research community. Recent studies have fo-
cused on learning video embeddings that are cross-attended
with generative LLMs like GPT-2 [14], aiming to bridge the
domain gap between textual and visual representations. In
the present work, we employ a pretrained model known as
LaViLa [18], for the specific task of video captioning.
Speech Processing: Speech is the most commonly used
method of interaction among humans, so is that for the
human-computer interaction also it can play a role. In this
research we use google API for both speech to text (ASR)
and text to speech (TTS) which was found in [1, 2].

3. Method
Our system integrates ASR technology to transcribe

verbal inputs into textual format, which is synergistically
coupled with audiovisual data streams captured by the
Hololens2 camera. This enables the system to acquire a
comprehensive perspective of the user’s visual field. The
video footage procured from the camera is subsequently
processed to generate summarizations and textual descrip-
tions. LLMs serve as the computational epicenter of the

Figure 2. Architecture of the proposed model showcasing the inte-
gration of GPT3.5-Turbo (ChatGPT) into the workflow. By incor-
porating GPT3.5-Turbo, we enhance the quality of generated text
descriptions and establish a seamless means of communication be-
tween instructional input, users, and the video text.

system, fulfilling dual roles: they not only answer the user
questions but also augment the fidelity of captioning in
video descriptions, thereby enhancing the system’s overall
capability in scene understanding tasks.

3.1. Recipe-based Instructional Dialog

In this section, we will present the system’s conversa-
tion feature. This feature is focused on the two most fre-
quently asked questions of the support system, including
asking about steps and asking about how to fix it when you
get mistakes.
Asking for Step Instructions: As for the question type
about the steps to perform a particular task, in our demo
we experimented with the question types about what is the
next step, what is the previous step. There is also a ques-
tion form asking how each step is. These types of questions
require the system to be able to understand the context of
the conversation, understand the recipe, and understand the
current state of the user.
Asking for Fixing Mistakes Errors are an inevitable aspect
of human performance, particularly for individuals who
lack prior experience in executing specific tasks. Conse-
quently, the capacity for an assistive system to facilitate er-
ror correction becomes critically important. Providing so-
lutions to rectify these mistakes necessitates that the sys-
tem possess both generalized knowledge across multiple
domains as well as contextual understanding specific to the
user’s current situation. This dual requirement underscores
the need for a nuanced and adaptive system capable of of-
fering effective support for error mitigation.

3.2. Enhancing Video Captions

By integrating GPT3.5-Turbo into the workflow, we can
improve the generated text descriptions and establish an ef-
fective means of communication between instructional in-
put, users, and the video text. The architecture of the pro-
posed model is shown in Fig. 2.

The integration of GPT3.5-Turbo as a central communi-



Figure 3. The impact of leveraging larger models such as GPT3.5-
Turbo on enhancing the quality of textual labels within the given
context. Leveraging larger LLMs and inclusion of contextual in-
formation such as recipes or instructions significantly improve the
accuracy and richness of generated textual labels, leading to a bet-
ter understanding and interpretation of the content.”

cation point allows for a seamless interaction between users
and the video content. Users can provide instructions or ask
questions related to specific video segments, and GPT3.5-
Turbo responds with informative and contextually relevant
explanations. This dynamic interaction not only improves
the accuracy and richness of the generated video-to-text la-
bels but also empowers users to actively engage with the
content and obtain valuable insights. As shown in Fig. 3,
leveraging larger models like GPT3.5-Turbo allows for sub-
stantial improvements in the quality of textual labels within
the given context. The application of these advanced mod-
els enhances the accuracy and richness of generated textual
labels, ultimately enhancing the overall understanding and
interpretation of the content.

3.3. An User-friendly Interactive System

In the comprehensive system we propose, users can
effortlessly engage via AR glasses, facilitating a stream-
lined human-computer interaction predominantly through
speech. The interactive experience is designed to emu-
late collaboration with a seasoned expert, thereby elevating
the user’s overall task performance. Moreover, the system
serves as a cost-effective alternative to traditional methods
of advanced human training, obviating the need for the hir-
ing of specialized instructors. This approach offers a scal-
able solution for enhancing human performance while re-
ducing associated training costs.

4. How to scale up with multimodal LLMs
guidance?

In our video-to-text pipeline, we utilized the LaViLa
model [18], as depicted in Fig. 4. Pre-trained on the Ego4D
dataset [7], the model is designed to transfer this expertise
effectively to Perceptually-enabled Task Guidance (PTG)
data, thereby achieving accurate and coherent text gener-
ation from video inputs.

Figure 4. Converting visual content to descriptive text with Video-
Conditioned Text Generation using LLMs.

Figure 5. Automating frame-by-frame labeling and annotation of
video files through video-to-text conversion models. This scalable
and versatile approach enables efficient natural language labeling
across diverse domains. However, it is important to note that the
generated text may contain noise, lack crucial details and environ-
mental dynamics, or even produce unrelated annotations.

4.1. Scaling the Natural Language Labeling of
Videos

We explore the application of video-to-text conversion as
a means of automating the frame-by-frame labeling and an-
notation process for video files. In this approach, we lever-
age video Transformers and GPT-2 [14] decoder with cross-
modal attention for video understanding, visual-linguistic
attention, and natural language generation to streamline the
arduous task of labeling videos with textual descriptions.
An example of the automated annotation of the videos is
shown in Fig. 5. By leveraging pre-trained models, video-
to-text conversion enables efficient analysis of the visual
content, resulting in the generation of descriptive labels for
each frame in the video. Moreover, with its ability to handle
large-scale video datasets, video-to-text conversion presents
a scalable solution for effectively scaling up the natural lan-
guage labeling of videos, opening doors to more extensive
applications in various domains. Despite the benefits, hav-
ing language decoders such as GPT-2 makes it vulnerable
to noisy label generation, which sometimes is not related
to the scene, lacks sufficient information, attends to wrong
or less important details, or is entirely unrelated/wrong text.
This encourages us to use an even larger LLM to help polish
the results of the GPT-2 here.



4.2. Multimodal LLMs Guidance and User-AI In-
teraction

The proposed model offers a comprehensive integra-
tion of various modalities, including video-to-text, text-to-
speech, audio-speech recognition, and GPT3.5-Turbo. This
multimodal approach ensures that all forms of input, regard-
less of their original format, are converted into text rep-
resentations. By unifying the data into a common textual
format, the model facilitates seamless integration and inter-
action across different modalities.

By combining the capabilities of video-to-text, text-to-
speech, audio-speech recognition, and GPT3.5-Turbo, the
proposed model enables a conversational and interactive ex-
perience. Users can provide instructions, queries, or engage
in natural language conversations with the system, which
responds accordingly based on the fused textual representa-
tions. This holistic approach enhances the model’s ability to
understand and interpret diverse input types, enabling more
comprehensive and effective communication between users
and the system.

5. Experiments

Data: We collated in-house data on an infrequently doc-
umented pinwheel recipe. With the appropriate legal clear-
ances, we utilized a helmet with video and audio functional-
ities in our lab to record participants making the recipe, en-
suring hands were also captured (unlike HoloLens2, which
does not record hands, leading us to exclude the use of
HL2SS). The resulting videos have varying duration, and
they come annotated with the 13 steps of the method. A
subset of this data is shared on our GitHub repository.
Video Conversion with LaViLa: For each frame, we pro-
duce a sentence, given the video’s frame rate of 30 fps.
Considering that the quickest human response and action
takes around 250 ms, generating captions for every 8 frames
aligns with real-time performance needs in physical aug-
mented reality. This frequency matches the swiftest observ-
able human movement.
Results and Discussion: In Tab. 1, the results show that
the text after being polished with LLMs was significantly
more relevant to the context under consideration. From the
trained video to text model with general data, we have made
the generated text more contextual, thereby opening the
potential for reducing the domain gap between pretrained
models and domain specific data without finetuning is re-
quired. From there, it shows that our proposed method can
be easily adapted to many different domains easily. Tab. 2
illustrates the impact of recipe types on the quality of gen-
erated captions. The data reveal that medium-length recipe
descriptions yield captions most closely aligned with the in-
tended context. This outcome is logical; brief descriptions
lack sufficient information for LLMs to accurately capture

Figure 6. Screenshot of the demo showcasing the dialog system.
Full video is available in our GitHub repository.

Reference recipe LaViLa [18] Ours
2-Words Text 0.817 0.845
Full sentence 0.841 0.854

Descriptive sentences 0.834 0.848
Table 1. The numbers indicates the ability of the proposed model
to classify the step based on natural language descriptions. The
LaViLa method has been compared to our method. The recipe
texts used to compute similarity are referred to at three different
levels: 2-Words text, full sentence, and descriptive sentences. Ex-
amples are ”spread butter”, ”Evenly spread butter on the tortilla”,
and ”Gently spread the scooped butter evenly over the entire sur-
face of the tortilla, leaving a small margin around the edges to
allow for spreading when you roll it” , respectively.

Step 0 1 2 3 4 5 6 7 8 9 10 11 12
#Samples 11 16 773 152 523 153 387 466 407 338 355 1752 338

LaViLa - short 0.830 0.810 0.825 0.810 0.849 0.823 0.822 0.802 0.838 0.807 0.797 0.805 0.839
LaViLa - medium 0.823 0.840 0.849 0.837 0.842 0.840 0.847 0.845 0.847 0.840 0.835 0.835 0.844

LaViLa - long 0.822 0.830 0.834 0.833 0.845 0.834 0.838 0.838 0.835 0.834 0.836 0.831 0.827
Ours - short 0.843 0.863 0.846 0.829 0.849 0.841 0.841 0.842 0.850 0.845 0.811 0.846 0.873

Ours - medium 0.845 0.865 0.853 0.858 0.847 0.858 0.849 0.862 0.854 0.848 0.840 0.858 0.859
Ours - long 0.842 0.847 0.846 0.850 0.847 0.855 0.847 0.847 0.851 0.844 0.842 0.851 0.841

Table 2. The values represent step-wise similarity scores between
the generated narratives and the reference recipe descriptions. The
table specifies the number of samples for each step, all originat-
ing from a single video. Here, ”short” corresponds to a 2-word
text, ”medium” is a full sentence, and ”long” refers to detailed
sentences as seen in 1.

context, while overly extensive descriptions introduce noise
that compromises caption quality. We demonstrate the ef-
ficacy of our dialog system through a live demo. The sys-
tem is user-friendly and capable of providing immediate re-
sponses to user inquiries. During the evaluation phase, the
system was subjected to a variety of question types, includ-
ing those that describe requisite actions for task completion
as well as troubleshooting procedures for errors. A screen-
shot of the demo is shown in Fig. 6. The demonstration
video can be accessed at our Github.

6. Conclusion
In summary, this paper introduces a system designed to

enhance both human’s accuracy and efficiency in task per-
formance. Additionally, we advocate for the incorporation
of LLMs to improve the quality of video captions. This
enhancement opens the way for more effective text-based
scene understanding. Our methodology’s effectiveness is
substantiated through both experimental outcomes and sys-
tem demo.
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Kottur, Anurag Kumar, Federico Landini, Chao Li, Yang-
hao Li, Zhenqiang Li, Karttikeya Mangalam, Raghava Mod-
hugu, Jonathan Munro, Tullie Murrell, Takumi Nishiyasu,
Will Price, Paola Ruiz Puentes, Merey Ramazanova, Leda
Sari, Kiran K. Somasundaram, Audrey Southerland, Yusuke
Sugano, Ruijie Tao, Minh Vo, Yuchen Wang, Xindi Wu,
Takuma Yagi, Yunyi Zhu, Pablo Arbeláez, David J. Crandall,
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