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Abstract

Room impulse response (RIR), which measures the sound
propagation within an environment, is critical for synthesiz-
ing high-fidelity audio for a given environment. Some prior
work has proposed representing RIR as a neural field func-
tion of the sound emitter and receiver positions. However,
these methods do not sufficiently consider the acoustic prop-
erties of an audio scene, leading to unsatisfactory perfor-
mance. This letter proposes a novel Neural Acoustic Con-
text Field approach, called NACF, to parameterize an audio
scene by leveraging multiple acoustic contexts, such as ge-
ometry, material property, and spatial information. Exper-
imental results show that NACF outperforms existing field-
based methods by a notable margin. Please visit our project
page for more qualitative results1.

1. Introduction
High-fidelity audio is essential in creating an immersive

experience, as it enhances the audience’s perception and en-
gagement [17, 3]. For example in movies and video games,
realistic sound effects are necessary for depicting believ-
able virtual environments. In “The Silence of the Lambs,”
for instance, the sound design reflects the terrifying prison
environment, with metal doors clanging and footsteps echo-
ing on concrete floors. Hence, generating audio with rich
acoustic information is critical for the listener’s perception
of an environment.

Room impulse response (RIR), which characterizes the
impact of room environment and emitter-receiver positions
on sound propagation, is a valuable auditory function that
aids in synthesizing audio with rich acoustic properties.
RIR consists of the direct propagation and early reflection
parts, revealing the occlusion and distance, as well as the
late reverberation component, conveying the scene size and
structure. By convolving an anechoic sound with the RIR
signal, we can synthesize targeted audio that imitates the

1https://liangsusan-git.github.io/project/nacf/

audio we would hear in this environment. In essence, RIR
offers rich acoustic cues that enable the receiver to discern
the sound source position and approximate geometry of the
surroundings.

The research on RIR can be traced back to the 1970s.
Krokstad et al. [9] and Vorländer [20] propose ray tracing
algorithms to simulate sound propagation in rooms. Allen
and Berkley [1] use a time-domain image expansion method
for small-room acoustics simulation, and Borish [2] extends
this image model to arbitrary polyhedra with any number of
sides. Recently, several wave-based methods [6, 15, 7] have
been proposed to calculate RIR using the wave equation.
However, these methods either require expensive computa-
tion or generate RIR with limited realism [5, 18].

Instead, this paper proposes an effective Neural Acous-
tic Context Field (NACF) approach for RIR generation by
implicitly representing an indoor audio scene with neural
fields. Specifically, NACF learns a mapping function from
the positions of the sound emitter and receiver to the desired
RIR to parameterize an audio scene, akin to traditional wave
field coding methods [16, 3, 17]. The learned fields can
then be queried with any emitter and receiver positions of
interest for RIR generation. Our inspiration comes from the
visual [14, 13, 10] and auditory [11, 19] neural fields.

2. Method

2.1. Task Definition

This letter targets rendering room impulse response with
implicit neural fields. Given the 2D positions of the sound
emitter e ∈ R2 and receiver r ∈ R2, the orientation of
the sound receiver θ ∈ [0◦, 360◦), and the room impulse
response signal O ∈ RT×2, where T is the length of
the signal, and 2 is the number of channels (we use two-
channel binaural sound), our goal is learning a neural field
f : (e, r, θ) → O. Afterward, we can render RIR by query-
ing the learned field with positions and orientations of in-
terest, including queries in the training set and unobserved
(novel) queries.

https://liangsusan-git.github.io/project/nacf/


Figure 1. Method overview. The left (a) is the top-down view of an example indoor scene. We sample points evenly along the room
boundary and extract various contextual information at each point, such as the RGB image, depth image, the acoustic coefficients of the
surface, and several spatial information. The middle (b) is the architecture of our NACF model. First, we feed multiple acoustic contexts
extracted along the room boundary (a) into the multi-modal fusion module. Then we integrate the fused contextual information with the
time query as the spatial-temporal query, which is the input to the implicit neural field. After the neural field generates the RIR, we utilize
a temporal correlation module to refine the RIR. Finally, we adopt the multi-scale energy decay criterion to supervise the model training.
The right (c) is the visualization of predicted and ground-truth RIR together with generation errors.

2.2. Approach Overview

As shown in Fig. 1, we enhance the RIR rendering capa-
bility of neural fields through three key components: acous-
tic context module, temporal correlation module, and multi-
scale energy decay criterion. The acoustic context module
provides a comprehensive understanding of the room acous-
tics to the neural fields, while the temporal correlation mod-
ule prevents overly smooth predictions. Additionally, the
loss criterion can reinforce the energy attenuation tendency
of predicted RIR at different time-frequency resolutions.

2.3. Acoustic Context

Sound propagation is mainly determined by (1) the ge-
ometry of an environment, (2) the material properties of the
surface, and (3) the positions of the sound emitter and re-
ceiver. Therefore, we design an acoustic context module to
encode all related acoustic information for RIR generation.

Specifically, we sample N points evenly along the room
boundary for context extraction (N = 4 in Fig. 1 (a)). We
extract the indoor depth image Idepth ∈ RH×W and RGB
image Irgb ∈ RH×W×3 from each point, where H and W
are the height and width of the image, respectively. The
depth image Idepth depicts the geometry in the local region
of each boundary point, while the RGB image Irgb contains
the semantic information of different objects and can indi-
cate the material property of the surrounding surface. We
further extract the acoustic coefficients Iac ∈ RP×3

+ of each
boundary point that measures sound absorption, scattering,
and transmission effects of P main frequencies. To capture
the spatial information within the room, we record the posi-

tion of each point Ib ∈ R2, the distance between the emitter
and each boundary point Ie ∈ R2, and the distance between
the receiver and each boundary point Ir ∈ R2. After captur-
ing all acoustic contexts, we embed them into latent vectors
of dimension h (vdepth,vrgb,vac,vb,ve,vr ∈ Rh). Con-
sequently, we obtain six acoustic contexts from each bound-
ary sample (Fig. 1 (b)).

We then feed all contextual information into the multi-
modal fusion module for acoustic context aggregation. In
detail, we use the concatenation operator to fuse acous-
tic contexts from different modalities and various bound-
ary points as the holistic knowledge of room acoustics
C ∈ RN×6×h:

C = [C1,C2, · · · ,CN ] ,

Ci = [vi
depth,v

i
rgb,v

i
ac,v

i
b,v

i
e,v

i
r], 1 ≤ i ≤ N ,

(1)

where Ci ∈ R6×h is the contextual information extracted
from the boundary point i, N is the number of boundary
points, and 6 is the number of context categories.

2.4. Implicit Neural Field

Once the acoustic context C has been estimated, we pro-
ceed to integrate it with the time query t ∈ [1, T ]. Similar
to NeRF [14], we employ positional encoding γ to project
the single-value time query t to a high-dimension space
γ(t) ∈ R2L, where L is the number of frequencies. Sub-
sequently, we non-linearly embed γ(t) into a time vector
t ∈ Rh. Finally we calculate the dot product between the
acoustic context C and the time vector t, resulting in the



modified time-aware acoustic context Ct ∈ RN×6:

C
(i,j)
t = C(i,j) · t, 1 ≤ i ≤ N, 1 ≤ j ≤ 6 . (2)

By incorporating the spatial context (C) and the temporal
information (t), the modified acoustic context Ct can effec-
tively serve as a spatial-temporal query for implicit neural
fields.

Next, we feed Ct into our implicit neural field, which
is instantiated as an MLP network Θ, to generate the RIR
signal:

fΘ : (Ct, θ, c) → Ot,c , (3)

where θ is the listener head orientation, c is the channel
index of audio signals (c can be left or right for binaural
audios), and Ot,c is the RIR of time t and channel c. To
obtain the complete RIR signal O, we query the learned
neural field with all spatial-temporal queries C1:T and all
channels c.

To ease the optimization process of implicit neural fields
and enhance the modeling ability, we use learnable orienta-
tion embeddings θ ∈ Rh and channel embeddings c ∈ Rh

to replace the orientation θ and the channel c, respectively.
We add θ and c to the input of all layers of the neural field
as the orientation and channel conditions.

2.5. Multi-scale Energy Decay Criterion

Finally, we optimize NACF to predict realistic RIR with
two supervision signals. Given a two-channel RIR signal
O, we use Short Time Fourier Transformation (STFT) to
convert it from the time domain to the time-frequency do-
main and calculate its magnitude M ∈ R+

F×D×2, where
F is the number of frequency bins, D is the number of time
windows, and 2 denotes the two channels. We calculate the
magnitude of ground-truth RIR Mg and that of predicted
RIR Mp, and measure their L1 distance as the first training
objective:

Lmag = ||Mg −Mp||1 . (4)

To reinforce the energy attenuation tendency of predicted
RIR, we follow Majumder et al. [12] using energy decay
matching loss as the second training objective. Given a
magnitude M, we first compute its energy in each time win-
dow by calculating the magnitude’s square and aggregating
it along the frequency dimension:

M′(d) =

F∑
f=1

(
M(f,d)

)2

, 1 ≤ d ≤ D , (5)

where M′ ∈ RD×2
+ represents the energy in each time win-

dow.
We then sum M′ along the time dimension, aggregating

the energy from the current step d until the end D for each

time step d ∈ [1, D] to capture the overall energy decay
trend:

M′′(d) =

D∑
i=d

M′(i), 1 ≤ d ≤ D , (6)

where M′′ ∈ RD×2
+ . The resulting M′′ has the same shape

as M′ since we calculate the energy sum for all time steps
d. Finally, we measure the L1 distance between the ground-
truth energy trend and the predicted one in the log space:

Ldcy = || log10 M′′
g − log10 M

′′
p ||1 . (7)

Because both Lmag and Ldcy are computed in the time-
frequency domain, their effectiveness relies on the chosen
window sizes and frequency bins for STFT. Therefore, we
use a set of window sizes {Wi} and frequency bins {Fi} to
assess the prediction qualities at different scales. If we view
Lmag and Ldcy as functions of window sizes and frequency
bins, the overall loss can be expressed as:

L =

S∑
i=1

(Lmag(Wi, Fi) + λ · Ldcy(Wi, Fi)) , (8)

where λ is a hyper-parameter that controls the weight of
Ldcy, and S is the set size (|{Wi}| and |{Di}|).

3. Experiments
3.1. Experimental Settings

Dataset. We evaluate our Neural Acoustic Context Field
using the SoundSpaces dataset [4]. To ensure a fair compar-
ison, we adopt the same six representative scenes for train-
ing and evaluation, as in previous works [11, 19]: two single
rooms with rectangular walls, two single rooms with non-
rectangular walls, and two multi-room layouts. We main-
tain the same training/test split as NAF [11] with 90% data
for training and 10% data for testing. For further dataset
details, please refer to NAF.
Metrics. Following INRAS [19], we select three metrics,
namely T60, C50, and EDT, to assess the RIR generation
quality of our model. T60 measures the time it takes for the
energy to decay by 60 dB. C50 captures the energy ratio be-
tween the first 50ms of RIR and the remaining portion. EDT
is similar to T60 but focuses more on the early reflection of
RIR. Please refer to IRNAS for details of these metrics.

3.2. Evaluation

Results. We compare our model with existing similar
works, including the state-of-the-art method INRAS [19].
In line with INRAS, we include the results of traditional
audio encoding methods, such as Advanced Audio Coding
(AAC) [8] and Xiph Opus [21], since our model can be in-
terpreted as an audio encoding approach. To evaluate the
quality of our generated RIR, we employ the T60, C50, and



EDT metrics, where a lower score indicates better RIR qual-
ity. As depicted in Table 1, NACF outperforms all other
approaches by significant margins across all metrics. Com-
pared to INRAS, NACF reduces the T60 error by 0.78, the
C50 error by 0.1 dB, and the EDT error by 0.005 sec.

Table 1. Comparison with the SOTA. We report the performance
on the SoundSpaces dataset using T60, C50, and EDT metrics. A
lower score indicates higher RIR generation quality.

Methods T60 (%) ↓ C50 (dB) ↓ EDT (sec) ↓
Opus-nearest 10.10 3.58 0.115
Opus-linear 8.64 3.13 0.097
AAC-nearest 9.35 1.67 0.059
AAC-linear 7.88 1.68 0.057
NAF [11] 3.18 1.06 0.031
INRAS [19] 3.14 0.60 0.019
NACF (Ours) 2.36 0.50 0.014

4. Conclusions
This letter proposes a novel method of rendering room

impulse response called NACF. With the aid of the acoustic
neural field, temporal correlation module, and multi-scale
energy decay criterion, NACF outperforms previous work
with a clear margin and sets the new state-of-the-art perfor-
mance on the SoundSpaces dataset.
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