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1 Introduction

Augmented reality devices have the potential to enhance human perception and
enable other assistive functionalities in complex conversational environments.
Effectively capturing the audio-visual context necessary for understanding these
social interactions first requires detecting and localizing the voice activities of
the device wearer and the surrounding people. These tasks are challenging due
to their egocentric nature: the wearer’s head motion may cause motion blur,
surrounding people may appear in difficult viewing angles, and there may be
occlusions, visual clutter, audio noise, and bad lighting. Under these conditions,
previous state-of-the-art active speaker detection methods do not give satisfac-
tory results. Instead, we tackle the problem from a new setting using both video
and multi-channel microphone array audio. We propose a novel end-to-end deep
learning approach that is able to give robust voice activity detection and lo-
calization results. In contrast to previous methods, our method localizes active
speakers from all possible directions on the sphere, even outside the camera’s
field of view, while simultaneously detecting the device wearer’s own voice ac-
tivity. Our experiments show that the proposed method gives superior results,
can run in real time, and is robust against noise and clutter.

2 Related works

Single and multi-channel sound source detection and localization problems have
classically been studied by speech and audio signal processing communities [21,
20, 11]. These approaches are sensitive to room acoustics and noisy backgrounds
and may be unreliable when multiple sources are present. More recently, machine
learning has been used for direction of arrival estimation with some success [12,
13,19,29]. Although these methods improve upon the traditional approaches,
the lack of visual information limits the efficacy of these systems in real-word
settings.

The computer vision community has seen a surge in audio-visual learning
research, in particular due to datasets like the AVA Speech and Activity cor-
pus [22], Voxconverse [23], and Voxceleb [24]. For action and activity recogni-
tion, several studies have shown evidence that audio disambiguates certain visu-
ally ambiguous cues [27, 28]. Audio-visual models have been explored for speech
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Fig. 1. Egocentric multi-channel audio-visual localization. Our end-to-end deep net-
work detects a 360° voice activity map and the wearer’s voice activity at the same
time.

recognition [25], sound source detection [8-10], multiple source separation [5-7,
17], localization of sounds in a 2D image [1,4,30], 3D scene navigation guided
by audio [26], and others.

Transformer networks have been proposed for single-channel active speaker
detection [14]. More recently, turn-taking has also been studied as a means to
improve detection performance [16]. A related problem is that of speech separa-
tion, which singles out a speaker’s voice by using both audio and cropped facial
images [5,7,17]. Although extensively studied, single-channel speaker detection
from an egocentric perspective is still a challenging problem due to substantial
device motion, occlusions, reduced visibility of speakers’ faces, and noise induced
by overlapping and interrupting speakers.

Single-channel audio-visual localization in exocentric settings has received
much attention lately [3,8-10,15]. Due to the lack of multiple channels, local-
ization is restricted to the image frame in a manner similar to traditional visual
object localization. To train multi-channel AV features, a self-supervised method
was proposed for face localization using audio around a target frame with a ref-
erence frame from another part of the same video as input [31]. However, a
360-degree version of this requires panoramic images and aligned audio spheri-
cal harmonics. Both of these are restrictive and not available in our AR problem
setting. In [2] the authors propose an audio-visual model that can process bin-
aural (two-channel) audio for sound source localization. However, the system
cannot be extended to multi-channel settings, and is restricted to localizing tar-
gets within the visual field of view.

3 Egocentric Active Speaker Localization

Given multi-channel audio-visual data captured using AR glasses with a micro-
phone array and RGB camera, we define the egocentric ASL problem as the
detection and spatio-temporal localization of all the active speakers in the scene
including the voice activity of the device wearer.

Fig. 1 illustrates the proposed egocentric ASL framework. Our method is an
end-to-end deep learning model which takes the raw audio and video as input and
estimates the active speaker activity heat map (V) and wearer’s voice activity
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(W) directly. The framework has two networks: an audio network cascade (A)
and an audio-visual network cascade (LAV). A converts raw multi-channel audio
and compacts a 2D representation aligned to each video frame, which is then
used to extract relevant features using a convolutional neural network to estimate
a direction of arrival estimate for the sources in the scene. AV then utilizes the
outputs from A and incorporates visual information using another network. The
resulting outputs from both A and AV are then combined to compute V and
W.

We train the network in two stages. In the first stage, we train the audio-only
and audio-visual network together without the wearer’s voice activity classifica-
tion network. In the second stage, we fix the audio feature layer’s weights and
train the fully connected network to predict the wearer’s voice activity. More
details of the proposed method can be found in [32].

4 Experiment Results

We evaluate our method using the EasyCom [18] dataset, a multi-channel audio-
visual dataset that includes around 6 hours of egocentric videos of conversations
within a simulated noisy environment. We use the RGB egocentric video to-
gether with the multi-channel audio from the four fixed microphones in our
experiments. The dataset has 12 video sessions. We use sessions 1-3 for testing
and the remaining 9 sessions for training.

We compare the proposed method in different variations against other ac-
tive speaker detection and localization methods. The methods in the evaluation
include:

Ours AV(-): Variations of our method including different combinations of
feature representations (cor: cross correlation, eng: energy, spec: spectrogram,
and box: head bounding boxes).

DOA+headbox: A state-of-the-art signal processing method [20] for extracting
spherical direction-of-arrival (DOA) energy maps from the 4 microphones on
the glasses combined with head detection bounding boxes for active speaker
detection.

DOA+image: A deep neural network trained to localize active speakers using
both traditional signal processing DOA maps [20] and video frames as inputs.

AV-rawaudio: A deep neural network trained using multi-channel raw audio
and video as the input.

Mouth region classifier (MRC): A visual-only method for classifying active
speech from cropped images of mouth regions extracted from a 68-point facial
key point detector.

TalkNet [14]: A transformer-based single-channel audio-visual active speaker
detection method that gave state-of-the-art results in the AVA active speaker
detection challenge. We use the method in two modes: TalkNet (AVA) trained on
the AVA dataset and TalkNet (EasyCom) trained on EasyCom.

BinauralAVLocation [2]: A two-channel audio-visual method for sound source
localization.
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ASL mAP Mean E1|Std1|Mean E2|Std2
Ours AV (cor) 84.14 Ours AV (cor) | 16.77 [12.63] 6.56 |8.77
Ours AV (cor+eng) 83.32 Ours AV (spec)| 8.81 [9.63| 6.21 |6.89
Ours AV(cor+box) | 86.25 DOA 129.82 [18.26 46.45 [21.50
Ours AV(cor+eng+box)| 86.32 DOA+image | 66.81 |7.89| 36.48 |8.97
Ours AV (spec) 85.49 AV-rawaudio | 40.14 [10.55| 140.75 |19.58
Ours AV (eng) 62.68 (b)
Ours AV(cor)-2ch 80.00
Ours AV (spec)-2ch 83.30 Wearer audio activity mAP
AV-rawaudio 72.32 Ours(cor) 90.20
DOA+headbox 52.62 Ours(cor+eng) 90.13
DOA+image 54.27 Ours(eng) 88.89
MRC (AVA) 46.60 Ours(spec) 91.69
MRC(EasyCom) 64.24 Ours(cor)-2ch 87.66
TalkNet (AVA) 69.13 Ours(spec)-2ch 90.14
TalkNet (EasyCom) 44.24 Eng(single channel) 76.71
BinauralAVLoc 60.75 AV-rawaudio 87.29
(a) (c)

Fig. 2. (a): Comparison of mAPs in the visual field of view. (b): Comparison of full
360° spherical voice activity localization errors measured in degrees. (c): Camera wearer
voice activity detection. Numbers in (a) and (c) show percentages.

4.1 Within-View Active Speaker Detection

We first evaluate the mean average precision (mAP) of active speaker localization
detections within the camera’s field of view. As shown in Fig. 2 (a), our methods
give much higher mAP than all of the competing methods.

4.2 Spherical Active Speaker Localization

One unique property of our proposed method is that it gives a full 360° spheri-
cal speaker localization result. We compare our method with methods that use
traditional DOA maps and the audio-visual variation with raw audio input. As
shown in Fig. 2 (b), our method gives the lowest angular errors.

4.3 Wearer Voice Activity Detection

Another unique property of the proposed method is that it can simultaneously
detect the voice activity of the person wearing the recording glasses. Camera
wearer audio activity detection is a new task. We construct different natural
solutions in the comparison. As shown in Fig. 2 (c¢), our proposed method gives
better results than the competing methods.

The proposed method runs in real time at over 180 frames per second using a
single GTX2080Ti GPU with about 50% utilization. The proposed method also
has a smaller latency compared to traditional signal processing methods, which
require estimating signal statistics over longer windows of time.
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