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Abstract. We propose a new framework for extracting visual informa-
tion about a scene only using audio signals. Opposed to the commonly-
used end-to-end learning paradigm, we show that learning a per-modal
manifold is critical when linking vision with audio. In more detail, we
first train a Vector-Quantized Variational Auto-Encoder to learn the
data manifold of the particular visual modality we are interested in. Sec-
ond, we train an Audio Transformation network to map multi-channel
audio signals to the latent representation of the corresponding visual
sample. We show empirically that this two-stage setup is critical for our
method to produce meaningful images from audio using publicly avail-
able datasets. In particular, we consider the prediction of the following
visual modalities from audio: depth and semantic segmentation. Code is
available at: https://github.com/ubc-vision/audio_manifold.
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1 Introduction

Line-of-Sight is a fundamental requirement of many computer vision algorithms
and applications [16, 17, 5, 13]. Computer vision tasks such as object localiza-
tion [23, 2, 6, 27] and autonomous navigation [18, 19, 21] are particularly affected
by the line-of-sight problem. Moreover, when it comes to indoor vision applica-
tions [9, 22, 1, 15, 20, 3], meeting the line-of-sight requirement becomes even more
challenging. On the other hand, potential audio-based methods do not require a
direct line-of-sight. More recent research works on audio have shown that even
more involved audio-based methods can be designed, such as methods that es-
timate rough visual characteristics of a scene [7, 26, 10] in terms of depth and
semantic segmentation.

In this paper we propose a method for extracting visual information from
audio which is not limited to sounding objects. Specifically, we propose a method
capable of predicting: depth, and semantic segmentation of a scene. The proposed
method is based on VQ-VAE [25] for learning the manifold of the visual and
data, and an audio transformation network for mapping the input sound to
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Fig. 1. Overview of our method. At first stage the data manifold is learnt for each
visual modality by using a VQ-VAE. After that, the audio transformation network
maps an audio sample to the closet visual sample in manifold space.

most similar manifold sample. Critically, our method operates in two stages,
instead of an end-to-end setup.

2 Method

In this paper we propose a two-stage method for extracting visual information
from audio, as shown in Fig. 1. The first stage consists of training a VQ-VAE on
a particular visual modality, which can be but not limited to: depth maps, and
semantic segmentation maps. The second stage consists of training a domain
transformation network, which we refer to as Audio-Transformation network
(AT-net), to map audio signals to the visual modality.

We propose this two-stage approach because it provides advantages com-
pared to single-stage (end-to-end) approaches. End-to-end models have limi-
tations when used to extract visual information from audio signals. We have
empirically observed that such models converge to an average representation of
the data-set that has low quality and lacks visual detail. A two-stage approach
can overcome these issues bylearning a transformation to the learned manifold.1.
The key idea of learning a transformation at the manifold level is that it poten-
tially allows to reconstruct the overall structure, as well as the details, of a visual
modality because the decoder is specific to that modality. This transformation
can be effectively learned because manifold data lies on a higher dimensional
space which can enforce sparsity. We use a VQ-VAE framework for learning the
manifold of a given visual modality, in our case depth, and segmentation maps.

1 We refer to manifold as the space defined by the encoded representation of some
data type (visual data in our case).
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Audio Transformation. The purpose of the AT-net is to encode an audio
sample to the closest manifold sample in the visual domain. The AT-net consists
of three components: audio encoder, domain transformation MLP, and visual
manifold decoder. The AT-net is simply trained with the L2 loss at the manifold
level. In more detail, given a training (i.e. audio, visual) pair, first the visual
sample is encoded onto the visual manifold using the VQ-VAE encoder. Then,
the encoding on the manifold for this data sample acts as the target for train-
ing the AT-net. We train the AT-net on the continuous (not quantized) latent
representation of the visual data.

3 Results

We evaluate our method on the publicly available datasets: the “Omni Audiotory
Perception” (OAP) [26] and “Multimodal Audio Visual Dectection” (MAVD)
[24]. Depth maps and semantic segmentation maps computed from RGB frames
using the methodology in [26] which uses Monodepth2 [11] and Deeplabv3 [4].

Network specifics. For the VQ-VAE we adopt a similar configuration as [25].
For the AT-net, the audio encoder is a Resnet18 [12]. The domain transformation
MLP consists of three dense layers, and the visual decoder consists of series
of strided transposed convolutional layers which upsamples the output to the
desired manifold size. We use the Adam optimizer [14] with learning rate of
1× 10−4 for both the VQ-VAE and AT-net training.

Evaluation. For depth estimation, we use error metrics as defined in Eigen et
al. [8]. Specifically, we use: absolute relative distance (ABSrel), squared relative
distance (SQRrel), RMSE linear (RMSElin), and RMSE logarithmic (RMSElog).
In addition, we also evaluate AUCcrr of relative correct predictions below thresh-
olds τ ∈ {0, 0.01, . . . 0.3}. For the semantic segmentation evaluation we report
performance results in terms of mean Intersection over Union (mIoU), alongside
the individual IoU of each one of ground truth classes. Classes that scores an IoU
of below 0.1% for all the considered methods are removed from the evaluation.

Comparison. We compare our method with the method proposed in Vasudevan
et al. [26], using both 2ch and 8ch audio input. We include multimodal and
unimodal configurations, but do not include the super-resolution task. We also
compare against ECHO2DEPTH [10] (audio input only) for the depth estimation
task. For our method we report performance with respect to the spatial resolution
of the data manifold being 8× 8.

Omni auditory perception dataset. In Tab. 1 we report the performance
comparison for the task of depth maps estimation. In Tab. 2 we report the
performance comparison for the task of semantic segmentation maps estimation.
For this experiment we consider only significant classes—classes which are above
the threshold of 0.1% IOU for all methods. We show qualitative results for this
dataset in Fig. 2. Our method performs best.
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Fig. 2. Qualitative results for the scene 149 in the Omni auditory perception dataset.

End-to-End vs Two Stage. We note that in Tab. 1 we further compare against
a version of our method that is trained end-to-end. This variant performs sig-
nificantly worse, demonstrating the importance of two-stage training.

Table 1. OAP depth map estimation
results.
Method ABSrel ↓ SQRrel ↓ RMSElin ↓ RMSElog ↓ AUCcrr ↑
[10] ECHO2DEPTH .731 6.13 7.00 1.19 .077
[26] 2ch .478 2.78 5.12 .527 .068
[26] 8ch .674 4.51 5.29 .602 .047
[26] 2ch +seg .304 1.32 4.68 .446 .089
[26] 8ch +seg .372 1.45 4.59 .471 .076

Proposed .241 1.01 4.12 .361 .118
Proposed (End-to-End) .442 2.31 4.92 .526 .072

Table 2. OAP semantic segmentation re-
sults reported in IoU [%].

Method AVG Road Side. Build. Fence Veget. Terr. Sky Car

[26] 2ch 18.83 81.90 0.58 26.63 0.09 10.88 0.03 24.94 5.59
[26] 8ch 17.66 74.94 0.47 27.35 0.29 14.05 0.06 18.69 5.48
[26] 2ch + depth 18.69 79.68 0.19 28.88 0.25 7.85 0.30 26.70 5.74
[26] 8ch +depth 18.60 75.27 0.58 24.17 0.29 15.39 0.07 26.96 6.11

Proposed 20.73 74.67 4.34 11.79 1.53 15.11 2.59 53.31 2.49

Table 3. MAVD depth map estimation
results.
Method ABSrel ↓ SQRrel ↓ RMSElin ↓ RMSElog ↓ AUCcrr ↑

[10] ECHO2DEPTH .218 .561 2.34 .324 .14
[26] 2ch .232 .740 2.69 .324 .37
[26] 8ch .210 .669 2.54 .301 .46
[26] 2ch +seg .223 .676 2.55 .313 .46
[26] 8ch +seg .205 .634 2.49 .298 .15

Proposed .126 .290 1.51 .180 .191

Table 4. MAVD semantic segmentation
results reported in IoU [%].

Method AV G Road Side. Build. Fence Veget. Terr. Sky Car

[26] 2ch 36.66 76.42 25.59 48.56 16.16 58.88 14.86 26.47 26.40
[26] 8ch 40.05 78.75 28.96 52.68 18.65 63.56 17.59 29.81 30.47
[26] 2ch +depth 41.68 76.12 29.10 49.18 26.86 59.92 25.68 39.70 26.94
[26] 8ch +depth 47.36 80.15 34.83 55.31 30.71 64.46 31.61 47.74 34.11

Proposed 61.02 90.42 55.43 77.61 38.23 84.56 39.68 47.64 54.62

Multimodal audio visual detection dataset. In Tab. 3 we report the perfor-
mance comparison for the task of depth maps estimation. In Tab. 4 we report the
performance comparison for the task of semantic segmentation maps estimation.

4 Conclusion

We presented a novel framework for estimating visual information from audio.
The fundamental idea behind our method is learning the transformation between
the audio and the visual domains at a visual manifold level from a VQ-VAE
rather than using an end-to-end approach. We showed that this proposal results
in superior performance compared to previous approaches to this problem.
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