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Fig. 1: Given a stereo audio recording, we estimate a sound’s interaural time delay.
Our model learns through self-supervision to find correspondences between the signals
in each channel, from which the time delay can be estimated. We show time delay
predictions for two scenes, along with their corresponding video frames (not used by
the model). In both cases, the sound source changes its position in a scene, resulting
in a corresponding change in time delay. The full paper can be found here: https:
//ificl.github.io/stereocrw.

1 Introduction

Sounds in the world arrive at one of our two ears slightly sooner than the other.
This interaural time delay, which generally lasts only a few hundred microseconds,
indicates a sound’s direction and thus provides an important cue for multimodal
perception. In humans, for example, time delays convey the positions of objects
that move out of sight, and are integrated with visual cues when localizing
events [16]. Visual information can also guide the sound localization process,
allowing us to find a particular event of interest through binaural cues, while
ignoring the others.

While high-quality stereo sound recordings are now abundant, existing meth-
ods [15,19,13,17,6] often struggle to localize sound sources within them and the
difficulty in acquiring natural labeled data has limited their effectiveness. We
propose to address these problems by learning time delay estimation from real,
unlabeled recordings. Our approach, inspired by the contrastive random walk of
Jabri et al. [14], learns audio embeddings that can be used to find interaural cor-
respondences via cycle consistency: pairs of sounds from different stereo channels
that correspond to the same underlying events. We show examples of time delay
estimations for two real-world videos in Figure 1.

https://ificl.github.io/stereocrw
https://ificl.github.io/stereocrw
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We also propose a model inspired by instance discrimination [7,20,11,3] that
can perform a novel visually-guided time delay estimation task: localizing a
speaker in a multi-speaker audio recording, given only their visual appearance.
The resulting model is simple and can accurately localize speakers, without the
need for explicitly separating sounds in the mixture.

Through experiments on simulated environments with metrically accurate
ground truth, and on internet videos with directional judgments annotated by
human listeners, we show that we can accurately estimate interaural time delays
through self-supervised learning, using unlabeled stereo data and visual signals
allow our models to localize specific speakers within mixtures.

2 Method

The goal of the time delay estimation problem is to determine how much sooner
a sound reaches one microphone than another. Given the two channels of a stereo
recording, x1,x2 ∈ Rn, represented as waveforms, and a function h : Rn 7→ Rn×d

that computes features for each temporal sample, a common solution is to choose
a time delay τ that maximizes the generalized cross-correlation [15]:

Rx1,x2(τ) = Et [h1(t) · h2(t− τ)] , (1)

where hi = h(xi) are the features for xi, and hi(t) is the d-dimensional feature
embedding for time t.

Traditionally, the audio features, h, are defined using hand-crafted features,
e.g., Generalized Cross Correlation with Phase Transform (GCC-PHAT) [15]. We
propose, instead, to learn h through self-supervision from unlabeled data.

2.1 Learning interaural correspondence

Our embeddings should provide cycle consistent matches: the process of
matching features from x1 to those in x2 should yield the same correspondences
as matching in the opposite direction, from x2 to x1.

We adapt the contrastive random walk model of Jabri et al. [14] to binaural
audio. We create a graph that contains nodes for each of the temporal sample xi(t)
from both channels, with edges connecting the nodes that come from different
channels. We then perform a random walk that transitions from nodes in x1 to
those in x2, then back to x1, with transition probabilities that are defined by
dot products between embedding vectors:

Aij(s, t) =
exp(hi(s) · hj(t)/c)∑n

k=1 exp(hi(s) · hj(k)/c)
, (2)

where Aij(s, t) is the probability of transitioning from sample s in xi to sample t
in xj , and a temperature constant c. The features hi = h(xi; θ) are parameterized
with network weights θ and are represented using a ResNet [12]. We maximize the
log return probability of a walk that moves between nodes in the two channels:

Lcrw = − 1

n
tr(log(A12A21)). (3)
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2.2 Visually-guided time delay estimation

We also apply our model to the novel problem of estimating the time delay for
a single sound within a mixture using visual information. Given a sound mixture
containing multiple simultaneous speakers, we estimate the time delay for one
object, given a visual representation of its appearance.

We adapt the instance discrimination [20] variation of our model, with a
training procedure that resembles the “mix-and-separate” [21] paradigm. Given
two audio tracks u and v, we create a synthetic binaural sound mixture x1 = u+v
and x2 = shift(u, τu)+ shift(v, τv) for randomly sampled values τu and τv, where
shift(x, τ) shifts x by τ . The model is also provided with Iu, an image depicting
u. We learn audio-visual features by minimizing:

Lav = − log
exp(g1(t) · g2(t− τu)/c)∑n
k=1 exp(g1(t) · g2(k)/c)

, (4)

over all timesteps t, where gi = g(xi, Iu) are the learned audio-visual features
for channel xi.

2.3 Estimating delays from features

After learning our representation h or g, we can use it to estimate the time
delay by maximizing Rx1,x2 (Eq. 1). Each embedding votes on a value for τ
which can be performed by the nearest neighbor search, or by treating the
learned similarities as probabilities (Eq. 2) and taking the expectation, i.e.,
1
n

∑
s,τ τA12(s, τ) [2]. We then estimate final time delay from these votes, either

by taking the mean or by using a RANSAC-like [8] mode estimation method.

3 Experiments

We evaluate our methods using both simulated audio with accurate time
delays, and real-world binaural audio with quantized sound direction categories.

3.1 Evaluation of Interaural Correspondence

Table 1: Delay estimation on simulated
data. We use SNR=10 and RT60=0.5s.
FAIR is FAIR-Play [9], FMA is FreeMusic-
Archive [5]. Vox-Sim is the simulator [18]]
with VoxCeleb2 [4] clips and FMA-Sim is the
simulator with FMA clips. Sup refers to su-
pervision, and Aug refers to augmentation.

Model Variation Data Sup Aug MAE RMSE

Salvati et al. [1]

Mean Vox-Sim ✓ 0.126 0.254
Mean Vox-Sim ✓ ✓ 0.169 0.294
Mean FMA-Sim ✓ 0.135 0.256
Mean FMA-Sim ✓ ✓ 0.146 0.267

GCC-PHAT [15]
Mode – 0.179 0.396
Mean – 0.160 0.318

Ours

Random – 0.448 0.505
StereoCRW FAIR 0.241 0.364
StereoCRW FAIR ✓ 0.174 0.322

StereoCRW FMA 0.434 0.654
StereoCRW FMA ✓ 0.133 0.259

We train our audio-based model,
StereoCRW, on datasets of stereo
sound: FAIR-Play [9] and Free-
Music-Archive (FMA) [5] and com-
pare it with GCC-PHAT [15], and the
supervised method Salvati et al. [1].

Evaluation with simulated data.
We first evaluate our models on sim-
ulated sounds with SNR = 10 and
RT60 = 0.5s, a condition with mod-
erate amounts of noise and reverbera-
tion. To measure prediction accuracy,
we use mean absolute error (MAE)
and root mean square error (RMSE)
in milliseconds (ms). For all the
methods, we provide 1024 (0.064s)
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audio samples (at 16Khz) as input and perform 128 time delay prediction votes.
As shown in Tab. 1, the StereoCRW model substantially outperforms GCC-PHAT
when it is trained on FreeMusic-Archive, obtaining performance comparable with
supervised models trained on synthetic data.

Table 2: In-the-wild evaluation. We eval-
uate our models’ ability of localizing sound-
ing objects on in-the-wild test cases.

Model Variation Aug. Dataset Acc (%) ↑

Salvati et al. [1]

Mean Vox-Sim 87.0
Mean ✓ Vox-Sim 87.3
Mean FMA-Sim 87.9
Mean ✓ FMA-Sim 89.1

Chance – – 50.0
IID – – 75.5
GCC-PHAT [15] Mean – 81.3

Ours
Random – – 72.5
StereoCRW FMA 82.5
StereoCRW ✓ FMA 88.7

Evaluation with in-the-wild au-
dio recordings. We then evalu-
ate how well our method can localize
sound directions in challenging real-
world scenes, using audio collected
from the internet where ground truth
directions are annotated by human lis-
teners. As shown in Tab. 2, our pro-
posed approach substantially outper-
form GCC-PHAT and shows compara-
ble results to a state-of-the-art super-
vised method, Salvati et al.

3.2 Visually-guided Time Delay Estimation

Table 3: Visual-guided time delay esti-
mation on simulated data. We evaluate
our models’ ability of predicting ITD signals
from mixtures with visual aids.

Audio duration 0.96s 2.55s

Model RMSE Err≤ 0.1 ↑ RMSE Err≤ 0.1 ↑
GCC-PHAT [15] 0.503 56.6 0.504 56.9
Salvati et al. [1] 0.490 52.5 0.483 50.1
Random Oracle 0.502 56.9 0.502 56.9
Ours - Random 0.493 10.0 0.503 9.76
Ours - StereoCRW 0.493 56.8 0.488 55.7
Ours - AV 0.304 72.5 0.295 76.1

Sep [10] + GCC 0.361 77.6 0.323 82.2
Sep [10] + StereoCRW 0.309 82.8 0.281 85.5

We train our audio-visual model
on VoxCeleb2 [4] with paired face im-
ages and mono audio. We evaluated
methods on simulated data using two
metrics: RMSE, and the percentage of
predictions with less than 0.1 ms (1.6
samples) of error (Err≤ 0.1). We feed
models 1.0s or 2.55s audio, resulting
in 512 votes. We compare our audio-
visual approach with audio-only meth-
ods, a (oracle) baseline which selects
one of the two speakers’ ground-truth
time delay at random, and a two-stage method that first separates the speaker’s
voice for each channel using VisualVoice [10], then applies audio-based time
delay estimation methods to the separated sounds. We show results in Tab. 3.
Our audio-visual model substantially outperforms the audio-only baselines and
performs comparably to Sep+GCC-PHAT in regression metrics.

Speaker 2
Speaker 1

Speaker 2 Speaker 1

Fig. 2: Visually-guided localization for
a real-world scene.

Real-world visually-guided local-
ization. We also perform experi-
ments on a self-recorded video (Fig. 2).
Two speakers talk concurrently while
moving off-screen. Our model localizes
each speaker in the mixture with a
cropped image of their face. We show
the mean and standard deviation of
delay predictions in 2.0s windows.
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