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Abstract. We explore active audio-visual separation for dynamic sound
sources, where an embodied agent moves intelligently in a 3D envi-
ronment to continuously isolate the time-varying audio stream being
emitted by an object of interest. The agent hears a mixed stream of
multiple audio sources (e.g., multiple people conversing and a band
playing music at a noisy party). Given a limited time budget, it needs
to extract the target sound accurately at every step using egocentric
audio-visual observations. We propose a reinforcement learning agent
equipped with a novel transformer memory that learns motion policies
to control its camera and microphone to recover the dynamic target
audio, using self-attention to make high-quality estimates for current
timesteps and also simultaneously improve its past estimates. Using
highly realistic acoustic SoundSpaces [4] simulations in real-world scanned
Matterport3D [3] environments, we show that our model is able to
learn efficient behavior to carry out continuous separation of a dynamic
audio target. Full paper appearing in the main conference: https://
arxiv.org/abs/2202.00850. Project: https://vision.cs.utexas.edu/
projects/active-av-dynamic-separation/.

1 Introduction

Our daily lives are full of dynamic audio-visual events, and the activity and
physical space around us affect how well we can perceive them. For example, an
assistant responding to his boss’s call in a noisy office could visually spot other
noisy actors nearby and move to a quieter corner to hear better.

These examples show how smart sensor motion is necessary for accurate audio-
visual understanding of dynamic events. For audio sensing in an environment full
of distractor sounds, variations in acoustic attributes like volume, pitch, etc.— in
concert with a listener’s proximity and direction from it—determine the listener’s
ability to hear a target sound. However, just getting close or far isn’t always
enough: effective hearing may require the listener to move around by visually
sensing competing sound sources and surrounding obstacles, and discovering
locations favorable to listening (e.g., an intersection of two walls reflects audio
and boosts hearing, a tall cabinet can dull acoustic interferences, etc.).

In this work, we investigate how to induce such intelligent behaviors in
autonomous agents through audio-visual learning. Specifically, we propose the
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Fig. 1: Active audio-visual separation of dynamic sources. Given multiple dynamic
(time-varying, non-periodic) audio sources S, all mixed together, the proposed agent
separates the audio signal by actively moving in the 3D environment on the basis of its
egocentric audio-visual input, so that it is able to accurately retrieve the target signal
at every step of its motion.

new task of active audio-visual separation of dynamic sources : given a stream of
egocentric audio-visual observations, an agent must determine how to move in an
environment with multiple sounding objects in order to continuously retrieve the
dynamic (temporally changing) sounds being emitted by some object of interest,
in a limited time budget. See Figure 1. This task is relevant for augmented reality
(AR) and mobile robotics applications, where a hearing device or service robot
needs to aid a user in understanding target sound sources in a busy environment.

Whereas traditional audio-visual separation models extract sounds passively
from pre-recorded videos [5,1,10,7,8,12,11], our task requires active placement
of the agent’s camera and microphones over time. Whereas embodied audio-
visual navigation [4,6] entails moving towards a sound source, our task requires
recovering the sounds of a target object. The recent Move2Hear model performs
active source separation [9] but is limited to static (i.e., periodic or constant) sound
sources, such as a ringing phone or fire alarm—where recovering one timestep
of the sound is sufficient. In contrast, our task involves dynamic audio sources
and calls for extracting the target audio at every step of the agent’s movement.
Variations in the observed audio arise not only from the room acoustics, but also
from the temporally-changing and fleeting nature of the target and distractor
sounds. This means the agent must recover a new audio segment at every step
of its motion, which it hears only once. The proposed task is thus both more
realistic and more difficult than existing active audio-visual separation settings.

To address active dynamic audio-visual source separation, we introduce a
reinforcement learning (RL) framework that trains an agent how to move to
continuously listen to the dynamic target sound. Our agent receives a stream
of egocentric audio-visual observations in the form of RGB images and mixed
binaural audio, along with the target category of interest (human voice, musical
instrument, etc.) and decides its next action (translation or rotation of its camera
and microphones) at every time step. We test our framework on audio-visual
simulations from SoundSpaces [4] together with Matterpor3D [3] environment
scans and non-periodic sounds from multiple human speakers, music and common
background sources. Our model outpeforms the state-of-the-art Move2Hear [9]
model, generalizing better to unheard sounds in unseen environments.
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Fig. 2: Our model addresses active audio-visual separation of dynamic sources by lever-
aging a synergy between a dynamic audio separator and an active audio-visual motion
policy. At timestep t, the dynamic separator fD uses self-attention to continuously iso-
late the signal MG

t for a target sound category G from its received mixed binaural Bmix
t

on the basis of its past and current initial estimates {M̃G
t−sM , . . . , M̃G

t }, while also using
its current initial separation M̃G

t to refine past final separations {M̈G
t−E , . . . , M̈

G
t−1}.

Here, sM is size of external memory for storing past estimates. The motion policy uses
the separator’s outputs, M̈G

t and B̃G
t and egocentric RGB images Vt to guide the agent

to areas suitable for separating future dynamic targets.

2 Approach

We train a motion policy to make sequential movement decisions on the basis of
egocentric audio-visual observations, guided by dynamic audio separation quality.
Our model has two main components (see Fig. 2): 1) an audio separator network
and 2) an active audio-visual (AV) motion policy.

The separator network serves three functions at every step: 1) it passively
separates the current target audio segment from its heard mixture, 2) it improves
its past separations by exploiting their correlations in acoustic attributes like
volume, pitch, quality, content semantics, etc. with the current separation, and
3) it uses the current separation to guide the motion policy towards locations
favorable for accurate separation of future audio segments. The motion policy is
trained to repeatedly maximize dynamic separation quality. It moves the agent
in the 3D scene to get the best possible estimate of the complete target signal.

These two components share a symbiotic relationship, each feeding off of
useful learning cues from the other while training. This allows the agent to learn
the complex links between separation quality and the dynamic acoustic attributes
of the target source, its location relative to the agent, the scene’s material layout
(walls, floors, furniture, etc.), and the inferred spatial arrangement of distractor
sources in the 3D environment. Refer to the full paper for more details on our
approach.
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Table 1: Active audio-visual dynamic source separation.
Heard Unheard

Model SI-SDR ↑ STFT ↓ SI-SDR ↑ STFT ↓

Stand In-Place 2.49 0.328 2.03 0.343
Rotate In-Place 2.50 0.327 2.04 0.343
DoA 2.78 0.313 1.88 0.342
Random 2.81 0.314 1.95 0.343
Proximity Prior 2.92 0.309 2.05 0.338
Novelty [2] 1.68 0.358 1.44 0.366
Move2Hear [9] 2.31 0.331 2.06 0.339

Ours 3.93 0.273 2.57 0.318

3 Experiments

We evalaute our model using standard metrics, like the STFT disance between
the predicted and the ground-truth spectrograms for the target audio, and SI-
SDR, a scale-invariant measure of the extent of distortion in the separated audio.
We compare against different baselines and existing methods, including passive
baselines that holds the starting pose of the agent (Stand In-Place) or keeps
rotating at the start location (Rotate In-Place). Other baselines are agents
that samples the direct sound from a step away from the target source (DoA), or
randomly scouts the area around the target (Random and Proximity Prior).
We also compare against a model that maximizes area coverage within the time
budget and samples diverse audio cues (Novelty [2]) and a state-of-the-art
active separation model for static sources (Move2Hear [9]).

Table 1 shows the separation quality of all models. The passive baselines
Stand and Rotate In-Place fare worse than the ones that move and sample more
diverse audio cues, like Random and Proximity Prior. However, despite being
able to move, Novelty [2] performs poorly; in its effort to maximize coverage of
the environment, it wanders too far from the target and fails to hear it in certain
phases of its motion. DoA improves over the stationary baselines, since standing
a step away from the target source allows it to sample a cleaner audio cue.

Our model outperforms all baselines and Move2Hear by a statistically signifi-
cant margin (p ≤ 0.05). Its performance demonstrates the impact of our active
policy and long-term memory. Simply staying at or close to the source to be able
to continuously hear the target (as done by Stand or Rotate In-Place, DoA, and
Proximity Prior) is not enough. Our improvement over Move2Hear [9] further
emphasizes the advantage of our transformer memory fT in dealing with dynamic
audio, both in terms of boosting separation when the agent is able to sample
a cleaner signal, and providing robustness to the separator when the agent is
passing through zones that are relatively less suitable for separation. Refer to
the full paper for more experiments and model analysis.
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