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1 Introduction

Humans understand the surrounding environment by integrating signals from
different senses. In our daily life, sound and sight are two of the most commonly
used modalities, which have drawn much attention from researchers to explore
computational audio-visual scene understanding.

Previous audio-visual work [6, 2] usually assumes audio and visual data are
temporally aligned. However, the alignment does not always exist in real-world
videos. For example, sounding objects in many videos are outside of the field-of-
view (FoV). For these non-aligned cases, audio signals become more reliable in
understanding the events of interest. In this work, we address the audio-visual
video parsing (AVVP) task [5] that aims to parse a video into temporal event
segments and predict the audible, visible, or audio-visible event categories.

Existing approaches [5, 8, 3] usually focus on learning to leverage the unimodal
and cross-modal temporal contexts from weak supervisions. HAN [5] introduced a
simple Multimodal Multiple Instance Learning framework with cross-modal and
self-modal attention layers to utilize the video-level labels. Recent state-of-the-art
methods usually use the HAN as the baseline and modify it to further improve
parsing performance. Particularly, contrastive learning and label refinement are
proposed in Wu and Yang [8], where they adopted a contrastive loss to enforce the
temporal alignment between the audio and visual features at the same timestamp
and augmented training data with modality-aware event labels generation.

Our key motivation is to learn compact and discriminative audio and visual
representations by explicit multi-modal grouping for mitigating the modality
and temporal uncertainties in the weakly-supervised audio-visual video parsing
problem. Different from past approaches, we propose a new Multi-modal Group-
ing Network, namely MGN, to explicitly group semantic-aware multi-modal
contexts, which enables learning more compact and discriminative audio and
visual representations. Specifically, we first extract event-aware unimodal features
through unimodal grouping in terms of learnable categorical embedding tokens
for each individual modality. Then, we introduce a cross-attention layer with a
hard attention mechanism to aggregate cross-modal temporal contexts. Finally,
we utilize a cross-modal grouping module to predict the modality category from
updated class-aware unimodal embeddings.
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Fig. 1: Illustration of our Multi-modal Grouping Network (MGN).

Experimental results on the LLP [5] dataset validate that our new audio-visual
video parsing framework achieves superior results over previous state-of-the-art
methods [6, 2, 5, 8]. Empirical results also demonstrate the generalizability of our
approach to contrastive learning and label refinement proposed in MA [8]. In
addition, we substantially reduce the parameters of previous work by using only
47.2% parameters of baselines (17 MB vs. 36 MB).

2 Method
Given a video with both audio and visual tracks, our goal is to parse the video
into temporal segments associated with audible, visible, and audio-visible event
categories. We propose a novel baseline: Multi-modal Grouping Network (MGN)
to address the task, which mainly consists of two modules: class-aware unimodal
grouping and modality-aware cross-modal grouping, as shown in Figure 1.
Problem Setup and Notations. Given a video with T non-overlapping audio
and visual segments, our goal is to temporally localize and recognize audio, visual,
and audio-visual events that existed in the video. For the multi-label events with
C event categories at time t, we have audio, visual, and audio-visual event labels
for evaluation, which are denoted as: ya

t ,y
v
t ,y

av
t ∈ R1×C . During training, we do

not have the segment- and modality-level annotations. Therefore, we can only
use the video-level label yav ∈ R1×C to perform weakly-supervised learning.
Revisit Multimodal Multiple Instance Learning. To address the weakly-
supervised audio-visual video parsing problem, HAN [5] introduced a Multimodal
Multiple Instance Learning (MMIL) framework based on transformers [7]. Given
a set of audio-visual features Fa = {fat }Tt=1,F

v = {fvt }Tt=1 in T segments, HAN
applied self-attention and cross-attention layers to aggregate the unimodal and
cross-modal information at each timestamp. Then, the probability of segment-
wise categories for audio, visual, and audio-visual events (pa

t ,p
v
t ,p

av ∈ R1×C) is
predicted by a shared fully-connected (FC) layer and sigmoid function. Finally,
the model is trained to optimize a weakly-supervised loss of pav and a guided
loss of pa,pv with label smoothing: Lbase = O(yav,pav)+O(ya,pa)+O(yv,pv),
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Table 1: Quantitative results of weakly-supervised audio-visual video parsing. ‘C’
and ‘R’ denote the contrastive learning and label refinement proposed in MA [8].

Method
Segment-Level Event-Level

A V A-V Type Event A V A-V Type Event

AVE [6] 47.2 37.1 35.4 39.9 41.6 40.4 34.7 31.6 35.5. 36.5

AVSDN [2] 47.8 52.0 37.1 45.7 50.8 34.1 46.3 26.5 35.6. 37.7

HAN [5] 60.1 52.9 48.9 54.0 55.4 51.3 48.9 43.0 47.7 48.0

MGN (ours) 60.8 55.4 50.4 55.5 57.2 51.1 52.4 44.4 49.3 49.1

MA [8] (w C) 61.9 53.1 49.7 54.9 56.2 52.8 49.4 43.8 48.7 49.0

MGN (w C) 60.6 56.7 52.5 56.6 57.4 51.4 53.2 46.4 50.3 49.4

MA [8] (w R) 59.8 57.5 52.6 56.6 56.6 52.1 54.4 45.8 50.8 49.4

MGN (w R) 60.0 60.6 54.0 58.2 58.2 50.3 58.4 47.9 52.2 49.1

MA [8] (w C+R) 60.3 60.0 55.1 58.9 57.9 53.6 56.4 49.0 53.0 50.6

MGN (w C+R) 60.2 61.9 55.5 59.2 58.7 50.9 59.7 49.6 53.4 49.9

where O(·) is a binary cross-entropy function-based loss term, which summarizes
binary cross-entropy for all categories and O(y,p) =

∑
i BCE(yi, pi). y

a,yv are
video-level audio and visual labels generated by smoothing yav to decrease the
confidence of positive labels.

Class-aware Unimodal Grouping. In order to explicitly group class-aware
matching semantics for audio-visual representations, we introduce a novel class-
aware unimodal grouping module by incorporating learnable modality-specific
class tokens {cai }Ci=1, {cvi }Ci=1 to help to group raw input unimodal features
{fat }Tt=1, {fvt }Tt=1. We first use self-attention transformers to temporally aggregate
unimodal features from audio and visual inputs and align the features with the
categorical token embeddings: Then, the unimodal grouping blocks take the
learned audio and visual event class tokens and aggregated features as inputs to
generate class-aware audio and visual embeddings {ga

i }Ci=1, {gv
i }Ci=1.

In order to constrain the independence of each class token cai , c
v
i , we apply

FC layers and softmax operation to generate the category probability eai , e
v
i of

class tokens for audio and visual modalities with a class-constrained loss as:

Lcls =

C∑
i=1

CE(hi, e
a
i ) + CE(hi, e

v
i ) (1)

where CE(·) refers to cross-entropy loss; hi is an one-hot encoding vector and
only its element for the target class entry i is 1. After the class-aware unimodal
grouping, the video-level category predictions pa,pv of audio and visual events
is simply computed by a FC layer and sigmoid operator.

Modality-aware Cross-modal Grouping. The modality uncertainty requires
us to predict the modality category for matching with the only given video-level
target in an explicit way. To achieve this, we propose a modality-aware cross-modal
grouping module composed of cross-modal transformers and grouping blocks to
aggregate class-aware representations. Based on the audio-visual similarity in the
grouping stage, we combine all the audio features with visual features into new
cross-modal modality-aware features. Then, we leverage the joint audio-visual
representations {gav

i }Ci=1 to predict the video-level target of audio and visual
events via a FC layer and sigmoid function. The whole model can be optimized
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Fig. 2: Qualitative visualizations of learned audio and visual features.

in an end-to-end manner in terms of the objective function:

L = Lbase + Lcls (2)

At inference time, the unimodal class-aware similarity is used to predict the
audio, visual, and audio-visual events for each segment t.

3 Experiments

Dataset. The Look, Listen and Parse (LLP) Dataset [5] contains 11,849 YouTube
video clips of 10-seconds long from 25 different event categories. We follow the
prior work [5, 8] and use F-scores to evaluate both segment-level and event-level
predictions for audio, visual, and audio-visual events. The model is trained with
Adam [1] optimizer with β1=0.9, β2=0.999 and with an initial learning rate of
3e-4. We train the model with a batch size of 16 for 40 epochs.
Comparison to Prior Work. The quantitative comparisons with previous
baselines [6, 2, 5, 8] on the LLP dataset are reported in Table 1. As can be seen,
the proposed MGN achieves the overall best results against previous network
baselines in terms most of metrics. Furthermore, significant gains can be observed
in the setting of using the audio-visual contrastive learning and label refinement.
These improvements imply the strong generalizability of the proposed MGN to
the audio-visual contrastive learning and the label refinement.
Learned Class-aware Features. The learned class tokens are essential to
grouping class-aware semantics from audio and visual features. To better evaluate
the quality of those learned class-level features, we visualize the learned audio
and visual representations of 25 categories by t-SNE [4], as shown in Figure 2.
These meaningful visualizations further demonstrate that our MGN successfully
learns compact and discriminative features for each modality.

4 Conclusion

In this work, we present MGN, a fully novel Multi-modal Grouping Network with
class-aware unimodal grouping and modality-aware cross-modal grouping, to ex-
plicitly group class-aware matching semantics for weakly-supervised audio-visual
video parsing. Experimental results demonstrate the effectiveness and superiority
of our MGN against previous baselines. We also show the generalizability of our
simple framework to the audio-visual contrastive learning and label refinement.
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