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Abstract. Audio-visual source localization is a challenging task that
aims to predict the location of visual sound sources in a video. Since
collecting ground-truth annotations of sounding objects can be costly, a
plethora of weakly-supervised localization methods that can learn from
datasets with no bounding-box annotations have been proposed in recent
years, by leveraging the natural co-occurrence of audio and visual signals.
Despite significant interest, popular evaluation protocols have one major
flaw. That is, current evaluation metrics assume the presence of sound
sources at all times. This is of course an unrealistic assumption, and
thus better metrics are necessary to capture the model’s performance on
(negative) samples with no visible sound sources. To accomplish this, we
extend the test set of popular benchmarks, Flickr SoundNet and VGG-
Sound Sources, to include negative samples, and measure performance
using metrics that balance localization accuracy and recall. Using the
new protocol, we conducted an extensive evaluation of prior methods,
and found that most prior works are not capable of identifying negatives.

1 Introduction

Humans and most other animals have evolved to localize sources of sound in their
environment. This remarkable ability relies in part on the uniqueness of different
sound sources, which allows us to recognize the sounds we hear and visually
localize them in our environment. Given the significant advances in audio and
visual perception [12,2,10,9,8], there is broad interest in developing multi-modal
systems capable of mimicking our ability to visually localize sound sources.

One promising direction is to leverage the co-occurrence between sounds and
the corresponding sources in video data. Since audio-visual co-occurrence arises
naturally, algorithms can scale to very large datasets without requiring costly
human annotations. However, despite encouraging recent progress [13,5,1,11,7],
currently accepted evaluation protocols hide two critical limitations: (1) current
methods overfit easily even when scaled to large datasets, and (2) current methods
assume that visible sound sources are always present in the video and thus are
unreliable when deployed on realistic data where this assumption does not hold.

The first limitation remained hidden as prior works [5,11,3,7] rely heavily
on early stopping for optimal performance (i.e., by continuously validating the
model during training using a human-annotated set). The second limitation
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remained hidden as most prominent benchmark datasets [13,3] and evaluation
metrics only assess the ability to localize sound sources when one is present in
the video. Importantly, it ignores the ability to correctly predict the absence of
visual sound sources. This has led to a bias towards localization accuracy with
disregard for false positive detection.

The limitations above highlight the need for a more balanced and complete
evaluation protocol for visual sound source localization. To achieve this, we
extend popular benchmark test sets (Flickr SoundNet [13] and VGG-Sound
Sources [3]) to include ‘negative’ samples without any visible sound sources.
We conduct an extensive evaluation of existing methods [5,1,11,3,14,6], where
in addition to overall localization accuracy, we also assess methods based on
their ability to predict negative samples. We found that previous approaches do
indeed overfit easily and struggle to strike a good balance between false positive
and false negative rates. Evaluation code and extended test sets will be publicly
available. These challenges are also addressed in a new framework presented in
https://github.com/stoneMo/SLAVC.

2 Benchmarking Visual Source Localization

We introduce an evaluation protocol for VSL that is more sensitive to the
high false positives issues of current approaches. To ensure overfitting is not
hidden by the evaluation protocol, we suggest to rule out early stopping from
weakly-supervised VSL evaluation, and instead always evaluate models after
training them to convergence (or a large number of iterations). Note that early
stopping defeats the purpose of weakly-supervised VSL, as it requires a fully
annotated evaluation subset for tracking performance. To assess false detection
of non-existing sound sources, we extend the evaluation subsets of both Flickr-
SoundNet [13] and VGG Sound Sources [4] to include samples without visible
sound sources. We also propose to use standard metrics that can measure the
balance between high localization accuracy and low false positive rates.

Extended Flickr-SoundNet/VGG-SS. We extended VGG-SS /Flickr-SoundNet
by merging clips with no sounding objects to the original test sets. Specifically, we
analyzed 1000 videos from VGG-Sound test set (and 250 from Flickr-SoundNet
test set), and manually selected 5-second clips with non-visible sound sources.
This resulted in 379/42 samples with no sounding sources for VGG-SS/Flickr-
SoundNet, respectively. Beyond manually identifying negative pairs, we further
generate negative samples by pairing the audio and visuals from different videos.
We control the difficulty of these negatives by sampling 25% from videos contain-
ing sources of the same class (hard negatives), and 75% from different classes.
We merge all negatives with the VGG-SS [3] and Flickr-SoundNet [13] test sets.
Table 1 shows the statistics of the extended test sets. For analysis, we also split
test samples according to the size of the sound sources, as measured by the image
area (in pixels) occupied by the ground-truth bounding boxes.

Evaluation metrics. Localization maps are often evaluated by comparing

them to a group of human annotations using consensus intersection over union
(cIoU, denoted as u) [13]. Given a set of predictions with cloUs U = {u;}¥,,
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Table 1: Statistics of weakly-supervised audio-visual source localization test sets.

Total | Real Automated Automated Total

Small Medium Large Huge Pos Neg Easy Neg Hard Neg Neg Total
Ground-truth size (pixels) — 1-32%  322.96%  962-144% 144%-2247  1-224? 0 0 0 0 1-224%
Flickr-SoundNet [13] 0 9 83 158 250 0 0 0 0 250
Extended Flickr-SoundNet 0 9 83 158 250 42 169 39 250 500
VGG-Sound Source (3] 134 1796 1726 1502 5158 0 0 0 0 5158
Extended VGG-SS 134 1796 1726 1502 5158 | 379 3594 1185 5158 | 10316

Table 2: Comparison results of LocAcc for BEST and LATEST checkpoints. *
denotes the value reported in the LVS [3] and HardPos[14] papers.
Flickr-SoundNet VGG-SS

Method Early Stop  NO Early Stop  Early Stop ~ NO Early Stop
Attention10k [13] 42.26 34.16 18.50*/18.52 14.04
CoarsetoFine [11] 47.20 21.93
DMC [5] 55.60 52.80 23.90 22.63
DSOL [6] 74.00 72.91 29.91 26.87
LVS [3] 71.90* /71.60 19.60 34.40%/33.36 10.43
HardPos [14] 76.80* - 34.60% -
EZ-VSL [7] 79.60 66.40 34.28 31.58
EZ-VSL + OGL [7] 83.94 72.80 38.85 37.86

prior work [5,1,11,3,14,7] measures the localization accuracy (LocAcc) among all
samples with visible sounding objects, where each prediction is considered to be
correct if its cloU is above the cloU threshold «y. This metric is also referred to
as “CloU”. To avoid overriding nomenclature, we prefer the term Localization
Accuracy. The cloU threshold is set at v = 0.5 unless otherwise specified.

Beyond localization error on samples with visible sounding objects (identified
with a flag ¢; = 1), we also evaluate on samples with no visible sounding sources
(¢; = 0). Thus, the model is required to predict whether the current video
contains a visible source or not. This is accomplished by computing a confidence
score d;, which we define as the maximum value in the predicted audio-visual
similarity map. True positives are then given as TP = {i|¢c; = 1,d; > §,u; > v},
false positives as FP = {ilc; = 1,d; > §,u; < v} U {ile; = 0,d; > d}, and false
negatives as FN = {i|¢; = 1,d; < 6}. These sets are used to compute the Average
Precision (AP), and the maximum F1 (max-F1) score obtained by sweeping the
confidence threshold (i.e. maxs F'1(5)).

3 Experiments

Datasets. We evaluate the effectiveness of the proposed method on two datasets
- Flickr SoundNet [13] and VGG Sound Sources [4]. Following commonly-used
settings [3,14,7], we use subset of 144k pairs for training in both cases. We then
test on the respective extended test sets described in Sec. 2 and Tab. 1.

Prior works and baselines. We benchmark several prior VSL methods. Specif-
ically, we considered Attention 10k [13], CoarsetoFine [11], DMC [5], DSOL [6],
LVS [3], HardPose [14] and EZ-VSL [7]. We used authors’ implementations when
available, or our own otherwise. For EZ-VSL [7], we consider two versions: with
and without object guided localization (OGL). OGL computes an object prior
that is merged with the audio-visual localization map for improved predictions.
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Table 3: Comparison results of the proposed metrics (AP, max-F1, Precision).
Extended Flickr-SoundNet Extended VGG-SS

Method AP max-F1 Precision AP max-F1  Precision
CoarsetoFine [11] 0.00 38.20 47.20 0.00 19.80 21.93
LVS [3] 9.80 17.90 19.60 5.15 9.90 10.43
Attention10k [13] 15.98 24.00 34.16 6.70 13.10 14.04
DMC [5] 25.56 41.80 52.80 11.53 20.30 22.63
DSOL [6] 38.32 49.40 72.91 16.84 25.60 26.87
EZ-VSL [7] 46.30 54.60 66.40 24.55 30.90 31.58
EZ-VSL + OGL [7] 48.75 56.80 72.80 27.71  34.60 37.86

Table 4: Comparison results of max-F1 score for false positives among hand
selected negatives, easy negatives and hard negatives.

Extended Flickr-SoundNet Extended VGG-SS

Method Real  Automated Automated Real  Automated Automated
Neg Easy Neg Hard Neg Neg Easy Neg Hard Neg

LVS [3] 14.50 17.80 14.30 8.30 8.80 7.60
Attention10k [13]  27.10 28.10 27.00 9.10 7.40 7.90
CoarsetoFine [11]  36.90 39.40 35.80 22.10 19.80 18.90
DMC [5] 48.80 41.40 43.70 20.70 19.40 21.90
EZ-VSL [7] 52.60 55.70 54.20 32.80 36.10 31.40

Preventing overfitting. To demonstrate that current methods suffer from severe
overfitting, we trained models with and without early stopping [13,5,1,11,3,14,7].
Table 2 shows the localization accuracy (LocAcc) of these models on two datasets:
Flickr SoundNet and VGG Sound Sources. Despite the large training sets (144k
audio-visual pairs in both datasets), early stopping is critical to obtain high
LocAcc. This observation suggests that, due to overfitting, prior methods do not
scale well (i.e., they cannot take advantage of larger datasets).

Preventing false positives. Since prior works rely on LocAcc as the main
evaluation metric, models are not penalized for high false positives rates. To
address this issue, we evaluated on the proposed Extended Flickr and VGG-SS
datasets (without early stopping). Table 3 shows that, with the exception of EZ-
VSL, prior works achieve relatively low AP and max-F1 scores, as they struggle
to avoid false positives without substantially increasing false negatives.

Negative type. Table 4 studies the max-F1 score among a set containing only
a particular type of negatives. For each of the three negative subsets, we add a
similar number of positives. Once again, EZ-VSL was shown to better balance
positive and negative detections, regardless of the type of negatives.

4 Conclusion

In this work, we identify the critical issue with current weakly-supervised visual
sound source localization methods in their poor ability to identify when no sound
sources are visible (i.e., negatives). Since current evaluation protocols allow for
early stopping and always assume the presence of visible sound sources, they
are not sensitive to the aforementioned issues, the reason why they remained
relatively unknown. To fix these issues, we propose a new evaluation protocol
for VSL. We extend current evaluation datasets to also include negative samples
(i.e., frames with no visible sound source). These challenges are also addressed in
a new framework presented in https://github.com/stoneMo/SLAVC.
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