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Abstract. In this work, we present a method for self-supervised rep-
resentation learning based on audio-visual spatial alignment (AVSA), a
more sophisticated alignment task than the audio-visual correspondence
(AVC). In addition to the correspondence, AVSA also learns from the
spatial location of acoustic and visual content. Based on 360° video and
Ambisonics audio, we propose selection of visual objects using object
detection, and beamforming of the audio signal towards the detected ob-
jects, attempting to learn the spatial alignment between objects and the
sound they produce. We also investigate the use of spatial audio features
to represent the audio input. Experimental results show a 10% improve-
ment on AVSA for the first order ambisonics intensity vector (FOA-IV)
in comparison with log-mel spectrogram features; the addition of object-
oriented crops also brings significant performance increases for the hu-
man action recognition downstream task. A number of audio-only down-
stream tasks obtain performance comparable to state-of-the-art methods
on acoustic scene classification from ambisonic and binaural audio.
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1 Introduction

Self-supervised learning is a common approach for learning representations based
on unlabeled data, using proxy learning tasks. A popular strategy is the use of
audio-visual correspondence as proxy task [1,2,5,8], shown to be useful in various
downstream audio-visual or audio-only classification or recognition tasks [1,15].

The spatial information in multichannel recordings provides more informa-
tion about the recorded scene. Yang et.al. [16] showed that using a proxy task
that learns whether the left and right channels in a video are in the correct order
or flipped produces representations that outperform non-spatial versions in fur-
ther audiovisual tasks. Morgado et al. [7] extended this idea to 360° videos with
4-channel ambisonic audio, and trained a network to distinguish whether crops
in a 360° video frame are spatially aligned with the corresponding ambisonic au-
dio using contrastive learning. They employ both AVC and AVSA as proxy task.
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The method was shown to learn useful embeddings for a number of downstream
video classification task.

In this work, we propose a system that learns from 360° audio and video
data through spatial alignment. We build on the method proposed by Morgado
et al. [7] by proposing a number of specific audio processing steps which fo-
cus the method towards downstream audio tasks. Specifically: (1) We combine
audio beamforming with visual object detection to create a strong spatial cor-
respondence between the audio and video modalities. (2) We use spatial audio
features, to provide an explicit representation of the spatial content. We test our
approach on both audio and video downstream tasks, including the in-domain
AVC and AVSA, human action recognition, and acoustic scene classification with
ambisonic audio using the Eigenscape dataset [4].

2 Approach

A simplified block diagram of the proposed method is illustrated in Fig. 1. The
AVC learning process aims to learn feature representations based on audio-visual
correspondence while AVSA aims to learn feature representations by using mul-
tiple crops and rotated audio signals of the same clip, and their spatial corre-
spondence. The AVC and AVSA networks follow the same structure as [7].
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Fig. 1. Simplified block diagram of the proposed system. Object-oriented crops are
selected from the video using an object detection method, and the ambisonic audio is
rotated towards the center of the crop to form positive pairs.

Beamforming with ambisonic signals is typically done using a weighted ver-
sion of the encoding basis as beamforming weights [12]. In the simplest case,
the beamformed signal y(n) for a beamforming direction (θ0, ϕ0) is y(n) =
uT(θ0, ϕ0)x(n) for the ambisonic signals x(n) corresponding to a source signal
s(n):

x(n) =


w(n)
y(n)
z(n)
x(n)

 = u(θ, ϕ)s(n). (1)

Another common operation in Ambisonics is the capability to rotate the sound
field. In the case of FOA only, and contrary to higher-order Ambisonics, the
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rotation can be simply performed with a standard rotation matrix [10]. Follow-
ing e.g., the yaw-pitch-roll convention corresponding to angles (α, β, γ) such a
rotation Q is applied to the ambisonic signals as xrot(n) = Q(α, β, γ)x(n).

Since in [7] the crops are taken randomly from a video frame, beamforming to
the crops may be focusing on regions where there are no sound sources present.
To minimize such audiovisual mismatches, we implement the beamforming com-
bined with object-oriented crops obtained from YOLO detector [13]. We apply
YOLO on the equirectangular frames (360° image) of the video, to obtain ob-
jects with their bounding boxes and center points. The YOLO-based selection
process is illustrated in Fig.2.

Fig. 2. The AVSA learning procedure uses four crops of the same clip and correspond-
ing audio, presented as green, blue, red and yellow pairs.

For representing ambisonic signals, a feature more suitable than the usual
energy-based representations is the active intensity vector (AIV), an acoustical
quantity indicating the mean flow of sound energy. In this work we are using
a normalized version of the AIV as in [9], which bounds the magnitude of the
vector between [0,1], similar to the diffuseness feature [11], with unity length in
the presence of a single source, and less than unity in the presence of multiple
sources or noise and ambience. We include these features in the training by
stacking them as additional channels along with the mel-band energies (denoted
as FOA-IV in the results).

3 Experimental results

We first evaluated the proposed extensions on the in-domain tasks of AVC and
AVSA that are the same as used for training the system. The results showed
a significant improvement brought by the FOA-IV features compared to [7]. In
particular, the spatial alignment benefits of the use of spatial features, with an
increase in performance from 71% to 81%. The combination of beamforming and
YOLO did not bring any advantage for the in-domain tasks.

We tested the method on the human action recognition similar to [7] using
the UCF dataset [14] that contains 101 classes, and the HMDB dataset [6] that
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contains 51 classes. The results are presented in Table 1. Without fine tuning,
our proposed additions outperform the baseline in [7] in most cases on the UCF
dataset, and only for some combination on HMDB. When using fine tuning, the
advantage brought by the different extensions is diminished, even though the
performance obtained is, in some cases, higher. On UCF, the method using FOA-
IV performs the best, with 1.7% advantages over baseline; on HMDB, the method
using beamforming with YOLO achieves the highest with 2.2% advantages over
baseline. In both cases their performance lies in the 95% confidence interval of
the baseline.

without fine tuning with fine tuning
Dataset UCF HMDB UCF HMDB
Baseline [7] 36.3 23.1 65.9 32.0

FOA + YOLO 35.7 23.0 65.0 32.9
FOA + FOA-IV 36.9 22.7 67.6 33.3
FOA + FOA-IV + YOLO 37.5 24.0 66.2 32.4
Beamform 37.1 22.1 65.9 31.8
Beamform +YOLO 40.4 24.2 66.9 34.2

Table 1. Action recognition accuracy (%) without and with fine tuning.

We use the audio embeddings on acoustic scene classification downstream
task using ambisonic audio, using the EigenScape dataset [4], consisting of au-
dio from eight classes. The spatial classification system provided with the data [4]
had a 69% performance, later outperformed by a CNN approach, with 82% per-
formance [3]. Our results without any fine-tuning are presented in Table 2, and
show the superiority of learning through spatial correspondence, with AVSA hav-
ing 89.4% accuracy compared to 82.5% for AVC, and outperforming significantly
the previous state-of-the-art on this task.

AVC training AVSA training

Baseline [7] 82.5 89.4
FOA-IV 82.5 74.1

Table 2. Acoustic scene classification accuracy (%) on EigenScape data, no fine tuning

4 Conclusions

In this work, we proposed a self-supervised learning method for learning audio
representations based on spatial alignment between audio and video informa-
tion. To create a strong correspondence between the audio and video content,
we proposed a new method for sampling crops by detecting the objects in the
video frame using YOLO. Additionally, to use the spatial audio information
from Ambisonics to its full extent, we proposed use of acoustic intensity vector
as feature representation for the audio input.
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