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Abstract. We propose to explore a new problem called audio-visual
segmentation (AVS), whose goal is to output a pixel-level map of the
object(s) that produce sound at the time of the image frame. To facilitate
this research, we construct the first audio-visual segmentation benchmark
(AVSBench), providing pixel-wise annotations for the sounding objects in
audible videos. We propose two settings to be studied with AVSBench: 1)
semi-supervised AVS with a single sound source and 2) fully-supervised
AVS with multiple sound sources. We report the results of our baseline
framework and six methods from the relevant tasks on our benchmark.
Experiments demonstrate that AVSBench is promising for building a
bridge between the audio and pixel-wise visual semantics.
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1 Introduction

A human can classify an object not only from its visual appearance but also
from the sound it makes. For example, when we hear a dog bark or a siren wail,
we know the sound is from a dog or ambulance, respectively. Such observations
confirm that the audio and visual information complement each other.

To date, some researchers have investigated the audio-visual correspondence
(AVC) [1,2,3] problem, which aims to determine whether an audio signal and a
visual image describe the same scene. Others studied audio-visual event local-
ization (AVEL) [11,13,22,24,25,26,18,19,7,31], which classifies the segments of a
video into the pre-defined event labels. Additionally, audio-visual video parsing
(AVVP) [21,23,12,27] divides a video into several events and classify them as
audible, visible, or both. Due to a lack of pixel-level annotations, all these sce-
narios are restricted to the frame/temporal level, thus reducing the problem to
that of audible image classification.
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(a) AVS-S4Fig. 1. Comparison of the proposed AVS task with the SSL task. Sound
source localization (SSL) estimates a rough location of the sounding objects in the
visual frame, at a patch level. We propose AVS to estimate pixel-wise segmentation
masks for all the sounding objects, no matter the number of visible sounding objects.

A related problem, known as sound source localization (SSL), aims to locate
the visual regions within the frames that correspond to the sound [1,2,6,4,10,17].
Compared to AVC/AVEL/AVVP, the problem of SSL seeks patch-level scene
understanding, i.e., the results are usually presented by a heat map that is
obtained either by visualizing a similarity matrix or by class activation mapping
(CAM) [29]. It does not consider the actual shape of the sounding objects.

Therefore, a pixel-level audio-visual segmentation (AVS) problem is desired
to be explored. The goal of AVS is to densely predict whether each pixel corre-
sponds to the given audio, i.e., a mask of the sounding object(s) is required to
generate. Fig. 1 illustrates the differences between AVS and SSL. The AVS task
is more challenging than previous tasks as it requires the network to not only
locate the audible frames but also delineate the shape of the sounding objects.

To facilitate the research, we propose AVSBench, the first pixel-level audio-
visual segmentation benchmark that provides ground truth labels for sounding
objects. We divide our AVSBench dataset into two subsets, depending on the
number of sounding objects in the video (single- or multi-source). Correspond-
ingly, there are two settings of audio-visual segmentation: 1) semi-supervised
Single Sound Source Segmentation (S4), and 2) fully-supervised Multiple Sound
Source Segmentation (MS3). We test six methods from related tasks on AVS-
Bench and provide a new AVS method as a strong baseline. The extensive exper-
iments verify the benefits of considering audio signals for visual segmentation,
and the effectiveness of our proposed approach.

2 The AVSBench

Dataset Statistics. AVSBench is designed for pixel-level audio-visual segmen-
tation. We collected the videos using the techniques introduced in VGGSound [5]
to ensure that the audio and visual clips correspond to the intended semantics.
AVSBench contains two subsets—Single-source and Multi-sources—depending
on the number of sounding objects. All videos were collected from YouTube with
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(a) Video examples in Single-source subset (b) Video examples in Multiple-sources subset

Fig. 2. AVSBench samples. The AVSBench dataset contains the Single-source subset
(Left) and Multi-sources subset (Right). Each video is divided into 5 clips, as shown.
Annotated clips are indicated by brown framing rectangles; the name of sounding
objects is indicated by red text. Note that for Single-source training set, only the first
frame of each video is annotated, whereas 5 frames are annotated for all other sets.

Table 1. Existing audio-visual dataset statistics. Each benchmark is shown with
the number of videos and the annotated frames. The final column indicates whether
the frames are labeled by category, bounding boxes, or pixel-level masks.

benchmark videos frames classes types annotations

AVE [22] 4,143 41,430 28 video category
LLP [21] 11,849 11,849 25 video category

Flickr-SoundNet [20] 5,000 5,000 50 image bbox
VGG-SS [4] 5,158 5,158 220 image bbox

AVSBench (ours) 5,356 12,972 23 video pixel

the Creative Commons license, and each video was trimmed to 5 seconds. The
Single-source subset contains 4, 932 videos over 23 categories, covering sounds
from humans, animals, vehicles, and musical instruments. For the Multi-sources
subset, we picked the videos that contain multiple sounding objects, e.g ., a
video of baby laughing, man speaking, and then woman singing. To be specific,
we randomly chose two or three category names from the Single-source subset
as keywords to search for online videos, then manually filtered out videos to
ensure 1) each video has multiple sound sources, 2) the sounding objects are
visible, and 3) there is no deceptive sound, e.g ., canned laughter. In total, this
process yielded 424 videos for the Multi-sources subset, out of more than six
thousand candidates. The ratio of train/validation/test split percentages is set
as 70/15/15 for both subsets. Several video examples are visualized in Fig. 2,
where the red text indicates the name of sounding objects. As shown in Table 1,
compared to other audio-visual datasets, our AVSBench contains 5,356 videos
with 12,972 pixel-wise annotated frames, aiming to facilitate the research on
fine-grained audio-visual segmentation.
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Table 2. Comparison with methods from related tasks. Results of the evaluation
metrics J and F under both S4 and MS3 settings are reported.

Metric Setting
SSL VOS SOD AVS (ours)

LVS[4] MSSL[17] 3DC[14] SST[8] iGAN[15] LGVT[28]ResNet50 PVT-v2

J S4 .379 .449 .571 .663 .616 .749 .728 .787
MS3 .295 .261 .369 .426 .429 .407 .479 .540

F S4 .510 .663 .759 .801 .778 .873 .848 .879
MS3 .330 .363 .503 .572 .544 .593 .578 .645

Annotation. We divide each 5-second video into five equal 1-second clips,
and we provide manual pixel-level annotations for the last frame of each clip.
For this sampled frame, the ground truth label is a binary mask indicating the
pixels of sounding objects, according to the audio at the corresponding time. For
example, in the Multi-sources subset, even though a dancing person shows drastic
movement spatially, it would not be labelled as long as no sound was made. In
clips where objects do not make sound, the object should not be masked, e.g .,
the piano in the first two clips of the last row of Fig. 2b. Similarly, when more
than one object emits sound, all the emitting objects are annotated, e.g ., the
guitar and ukulele in the first row in Fig. 2b. Also, when the sounding objects
in the video are dynamically changing, the difficulty is further increased, e.g .,
the second, third, and fourth rows in Fig. 2b.

Benchmark. We test the methods from related tasks (SSL, VOS, and SOD)
on our benchmark. For each task, we pick two SOTA methods, and hence six in
total. Additionally, we design a baseline for the AVS task and report its perfor-
mance with two different backbones. The details of these six relevant methods
and our baseline can be found in our main paper [30]. The quantitative results are
shown in Table 2, with J measure [9] and F measure [16] as the evaluation met-
rics. The SSL methods show a substantial gap compared to our baseline, mainly
because the SSL methods cannot provide pixel-level prediction. The SOTA SOD
method LGVT [28] slightly outperforms our ResNet50-based baseline on the
Single-source set (J : 0.749 vs. 0.728), while is obviously worse than ours under
the Multi-sources setting (J : 0.407 vs. 0.479). This is because the SOD method
relies on the dataset prior, and cannot handle the situations where sounding
objects change but visual contents remain the same. Instead, the audio signals
guide our method to identify which object to segment.

3 Conclusion

We have proposed a new task called AVS, which aims to generate pixel-level
binary segmentation masks for sounding objects in audible videos. To facilitate
research in this area, we collected the first audio-visual segmentation benchmark
(called AVSBench). We proposed a baseline framework and compared it with
several existing SOTA methods of the related tasks on AVSBench, and further
demonstrated that our method can build a connection between the sound and
the appearance of an object.
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