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Abstract. Audio-visual navigation task requires an agent to find a
sound source in a realistic, unmapped 3D environment by utilizing ego-
centric audio-visual observations. Existing audio-visual navigation works
assume a clean environment that solely contains the target sound, which,
however, would not be suitable in most real-world applications due to
the unexpected sound noise or intentional interference. In this work, we
design an acoustically complex environment in which, besides the target
sound, there exists a sound attacker playing a zero-sum game with the
agent. More specifically, the attacker can move and change the volume
and category of the sound to make the agent suffer from finding the
sounding object, while the agent tries to dodge the attack and navigate
to the goal under the intervention. Under certain constraints to the at-
tacker, we can improve the robustness of the agent towards unexpected
sound attacks in audio-visual navigation. For better convergence, we de-
velop a joint training mechanism by employing the property of a cen-
tralized critic with decentralized actors. Experiments on two real-world
3D scan datasets (Replica and Matterport3D) verify the effectiveness
and the robustness of the agent trained under our designed environment
when transferred to the clean environment or the one containing sound
attackers with random policy. Project: https://yyf17.github.io/SAAVN.
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1 Introduction

Audiovisual embodied navigation, as an important task of embodied vision at
present [7, 9, 10], requires agents to find sound source in a real and unmapped
3D environment through egocentric audiovisual observation and exploration [6,
8, 2]. SoundSpaces is the first work to establish an audio-visual embodied navi-
gation simulation platform equipped with the proposed Audio-Visual embodied
Navigation (AVN) baseline that resorts to reinforcement learning [4]. The fol-
lowing works for audio-visual embodied navigation are committed to solving
long-term exploration [5], sound source is is not periodic and has a variable
length [3], and so on.

However, existing audiovisual navigation research results are conducted in the
simple setting of a clean environment with only the target sound source. Due to
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Fig. 1: Comparison of audio-visual embodied navigation in clean and
complex environment. (a) Audio-visual embodied navigation in an acous-
tically clean environment: The agent navigates while only hearing the sound
emitted by the source object. (b) Audio-visual navigation in an acoustically
complex environment: The agent navigates with the audio-visual input from the
source object, with the sound attacker making sounds simultaneously.

the existence of moving noise sources such as people talking while walking in the
indoor environment, the previous simple settings cannot solve new challenges.
The first challenge is how to model non-target moving sounding objects in a
simulator or reality? There is no such setting that existed! The second challenge is
whether an agent still finds its way to the destination in an acoustically complex
environment or not.

We propose first to construct such an acoustically complex environment for
the first challenge. In this environment, we add a sound attacker to intervene.
The sound attacker can move and change the volume and type of the sound at
each time step. In contrast, the agent decides how to move at every time step,
tries to dodge the sound attack, and explores for the sound target well under
the sound attack, as illustrated in Fig. 1. In reality, most behaviors, such as
someone walking and chatting past the robot, are not deliberately embarrassing
the robot. How to model this behaviors? Regard non-target sounding objects as
deliberately embarrassing the robot under worst case strategy. We called them
sound attackers. To simplify, this work only consider the simplest situation, one
sound attacker. So the competition between the attacker and the agent can be
modeled as a zero-sum two-player game. Our training algorithm is built upon
the architecture by [4], with a novel decision-making branch for the attacker.
Training two agents separately [13] leads to divergence. Hence we propose a joint
Actor-Critic (AC) training framework to solve the second challenge. We define
the policies for the attacker based on three types of information: position, sound
volume, and sound category. Exciting discoveries from experiments demonstrate
that the joint training converges promisingly in contrast to the independent
training counterpart. With such a design, we can improve the agent’s robustness
between the agent and the sound attacker during the game. Our experiments
reveal that an agent trained in a worst-case setting can perform promisingly
when the environment is acoustically clean or contains a natural sound intervenor
using a random policy. On the contrary, the agent trained in a clean environment
becomes disabled in an acoustically complex environment.

This work is the first audio-visual navigation method with a sound attacker
to the best of our knowledge [14]. To sum up, our contributions are as follows.
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– We construct a sound attacker to intervene environment for audio-visual
navigation that aims to improve the agent’s robustness. In contrast to the
environment used by prior experiments [4], our setting better simulates the
practical case in which there exist other moving intervenor sounds.

– We develop a joint training paradigm for the agent and the attacker.
– Experiments on two real-world 3D scenes, Replica [12] and Matterport3D [1]

validate the effectiveness and robustness of the agent trained under our de-
signed environment when transferred to various cases.

2 Approach

We propose Sound Adversarial Audio-Visual Navigation (SAAVN), a novel
model for the audio-visual embodied navigation task. Our approach is composed
of three main modules (Fig. 2). Given visual and audio inputs, our model 1)
encodes these cues and make a decision for the motion of the agent, then 2)
encodes these cues and decide how to act for the sound attacker to make an
acoustically complex environment, and finally 3) make a judgment for the agent
and the attacker and to optimization. The agent and the attacker repeat this
process until the agent has been reached and executes the Stop action. Our work
is based on the SoundSpaces [4] and Habitat [11] and with the publicly available
datasets: Replica [12] and Matterport3D [1] and SoundSpaces audio dataset.
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Fig. 2: Sound adversarial audio-visual navigation network. The agent and the sound
attacker first encode observations and learn state representation st respectively. Then,
st are fed to actor-critic networks, which predict the next action aω

t and aν
t . Both the

agent and the sound attacker receive their rewards from the environment.

3 Experiment
Table 1: Performance under (SPL (↑)/Rmean (↑))
metrics on Replica and Matterport3D . PVC. is a
complex Env.

Method
Replica Matterport3D

Clean env. PVC. Clean env. PVC.
Random 0.000/-4.7 0.000/-4.5 0.000/-5.0 0.000/-5.0
AVN 0.721/15.1 0.389/8.0 0.539/18.1 0.397/15.3
SAAVN 0.742/16.6 0.552/10.6 0.549/18.7 0.478/17.3

Comparison: The effective-
ness of our algorithm can be
seen through quantitative com-
parison of performance (see Ta-
ble 1) and qualitative compari-
son (see Fig 3).
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Fig. 3: Different models in different environments explore trajectories. The first row
in the figure is a clean environment, and the second line is an acoustically complex
environment. Acou com env stands for acoustically complex environment.

Robustness: Fig. 4 shows that
our method helps to improve
the robust performance.
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Fig. 4: Performance under different at-
tack strengths.

Ablation study: Fig. 5a demon-
strates that SAAVN outperforms
AVN in all acoustically complex envi-
ronments. Fig. 5b reveals that the re-
lationship between the navigation ca-
pacity and the volume of the sound at-
tacker is not straightforward and de-
pends on other factors, including the
position and sound category.

4 Conclusions
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Fig. 5: Ablation study.

This paper proposes a game
where an agent competes
with a sound attacker in an
acoustical intervention envi-
ronment. We have designed
various games of different
complexity levels by chang-
ing the attack policy regard-
ing the position, sound vol-
ume, and sound category. Interestingly, we find that the policy of an agent
trained in acoustically complex environments can still perform promisingly in
acoustically simple settings, but not vice versa. This observation necessitates
our contribution in bridging the gap between audio-visual navigation research
and its real-world applications. A complete set of ablation studies is also carried
out to verify the optimal choice of our model design and training algorithm.
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